398 resultados para Optical characterization
Resumo:
Background: CD8+ T cells and natural killer (NK) cells are involved in the immune response against some pathogens. For this purpose, we investigated the in situ paracoccidioidomycosis (PCM) immune response addressing the participation of NK cells, CD8+ T cells, perforin and granzyme B expression. Methods: Sixty biopsies of PCM skin and mucosa were classified according to the presence of compact granulomas (G1), poorly organized granulomas (G2) and both kinds in the same lesion (G3). CD8+ T cells, NK cells, perforin and granzyme B were showed by immunohistochemistry. Results: CD8+ T cells were increased over NK cells in cutaneous G1 and G2 lesions. There was no difference regarding such cells in G3 lesions, although they were abundant in such lesions. In mucosa, CD8+ T cells were increased in number over NK cells in all groups. Granzyme B in skin increased in G2 and G3. The number of granzyme did not differ in mucosal lesions in the three groups. Conclusions: CD8+ T cells and NK cells play a role in PCM cutaneous and mucosal lesions. The predominance of CD8+ T cells over NK cells may represent an effective response against the fungi. Moreover, the high number of granzyme B expressing cells corroborates this possibility.
Resumo:
PURPOSE. To evaluate the effect of disease severity and optic disc size on the diagnostic accuracies of optic nerve head (ONH), retinal nerve fiber layer (RNFL), and macular parameters with RTVue (Optovue, Fremont, CA) spectral domain optical coherence tomography (SDOCT) in glaucoma. METHODS. 110 eyes of 62 normal subjects and 193 eyes of 136 glaucoma patients from the Diagnostic Innovations in Glaucoma Study underwent ONH, RNFL, and macular imaging with RTVue. Severity of glaucoma was based on visual field index (VFI) values from standard automated perimetry. Optic disc size was based on disc area measurement using the Heidelberg Retina Tomograph II (Heidelberg Engineering, Dossenheim, Germany). Influence of disease severity and disc size on the diagnostic accuracy of RTVue was evaluated by receiver operating characteristic (ROC) and logistic regression models. RESULTS. Areas under ROC curve (AUC) of all scanning areas increased (P < 0.05) as disease severity increased. For a VFI value of 99%, indicating early damage, AUCs for rim area, average RNLI thickness, and ganglion cell complex-root mean square were 0.693, 0.799, and 0.779, respectively. For a VFI of 70%, indicating severe damage, corresponding AUCs were 0.828, 0.985, and 0.992, respectively. Optic disc size did not influence the AUCs of any of the SDOCT scanning protocols of RTVue (P > 0.05). Sensitivity of the rim area increased and specificity decreased in large optic discs. CONCLUSIONS. Diagnostic accuracies of RTVue scanning protocols for glaucoma were significantly influenced by disease severity. Sensitivity of the rim area increased in large optic discs at the expense of specificity. (Invest Ophthalmol Vis Sci. 2011;92:1290-1296) DOI:10.1167/iovs.10-5516
Resumo:
Rapid evolution and high intrahost sequence diversity are hallmarks of human and simian immunodeficiency virus (HIV/SIV) infection. Minor viral variants have important implications for drug resistance, receptor tropism, and immune evasion. Here, we used ultradeep pyrosequencing to sequence complete HIV/SIV genomes, detecting variants present at a frequency as low as 1%. This approach provides a more complete characterization of the viral population than is possible with conventional methods, revealing low-level drug resistance and detecting previously hidden changes in the viral population. While this work applies pyrosequencing to immunodeficiency viruses, this approach could be applied to virtually any viral pathogen.
Resumo:
Purpose: Several attempts to determine the transit time of a high dose rate (HDR) brachytherapy unit have been reported in the literature with controversial results. The determination of the source speed is necessary to accurately calculate the transient dose in brachytherapy treatments. In these studies, only the average speed of the source was measured as a parameter for transit dose calculation, which does not account for the realistic movement of the source, and is therefore inaccurate for numerical simulations. The purpose of this work is to report the implementation and technical design of an optical fiber based detector to directly measure the instantaneous speed profile of a (192)Ir source in a Nucletron HDR brachytherapy unit. Methods: To accomplish this task, we have developed a setup that uses the Cerenkov light induced in optical fibers as a detection signal for the radiation source moving inside the HDR catheter. As the (192)Ir source travels between two optical fibers with known distance, the threshold of the induced signals are used to extract the transit time and thus the velocity. The high resolution of the detector enables the measurement of the transit time at short separation distance of the fibers, providing the instantaneous speed. Results: Accurate and high resolution speed profiles of the 192Ir radiation source traveling from the safe to the end of the catheter and between dwell positions are presented. The maximum and minimum velocities of the source were found to be 52.0 +/- 1.0 and 17.3 +/- 1:2 cm/s. The authors demonstrate that the radiation source follows a uniformly accelerated linear motion with acceleration of vertical bar a vertical bar = 113 cm/s(2). In addition, the authors compare the average speed measured using the optical fiber detector to those obtained in the literature, showing deviation up to 265%. Conclusions: To the best of the authors` knowledge, the authors directly measured for the first time the instantaneous speed profile of a radiation source in a HDR brachytherapy unit traveling from the unit safe to the end of the catheter and between interdwell distances. The method is feasible and accurate to implement on quality assurance tests and provides a unique database for efficient computational simulations of the transient dose. (C) 2010 American Association of Physicists in Medicine. [DOI: 10.1118/1.3483780]
Resumo:
Purpose: To evaluate retinal nerve fiber layer (RNFL), optic nerve head (ONH), and macular thickness measurements for glaucoma detection using the RTVue spectral domain optical coherence tomograph. Design: Diagnostic, case-control study. Participants: One hundred forty eyes of 106 glaucoma patients and 74 eyes of 40 healthy subjects from the Diagnostic Innovations in Glaucoma Study (DIGS). Methods: All patients underwent ocular imaging with the commercially available RTVue. Optic nerve head, RNFL thickness, and macular thickness scans were obtained during the same visit. Receiver operating characteristic (ROC) curves and sensitivities at fixed specificities (80% and 95%) were calculated for each parameter. Main Outcome Measures: Areas under the ROC curves (AUC) and sensitivities at fixed specificities of 80% and 95%. Results: The AUC for the RNFL parameter with best performance, inferior quadrant thickness, was significantly higher than that of the best-performing ONH parameter, inferior rim area (0.884 vs 0.812, respectively; P = 0.04). There was no difference between ROC curve areas of the best RNFL thickness parameters and the best inner macular thickness measurement, ganglion cell complex root mean square (ROC curve area = 0.870). Conclusions: The RTVue RNFL and inner retinal macular thickness measurements had good ability to detect eyes with glaucomatous visual field loss and performed significantly better than ONH parameters.
Resumo:
This work reports the first ultrastructural investigation into the degradation process that starch granules isolated from bananas (cv. Nanicao) undergo during ripening. Starch granules from green bananas had a smooth surface, while granules from ripe bananas were more elongated with parallel striations, as revealed by CSLM and SEM. AFM images revealed that the first layer covering the granule surface is composed of a hard material and, as degradation proceeds, hard and soft regions seem to be repeated at regular intervals. WAXD patterns of banana starches were C-type, and the crystalline index was reduced during ripening. The B-/A-type ratio was increased, indicating the preferential degradation of the A-type allomorph. The branch-chain length distribution showed predominantly short chains of amylopectin (A and B1-chain). The fa/fb ratio was reduced during degradation, while amylose content was increased. The results allowed a detailed understanding of the changes that starch granules undergo during banana ripening. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Bladder cancer (BC) is the fourth most common cancer in the USA. In Brazil, BC represents 3% of the total existing carcinomas in the population and represents the second highest incidence among urological tumors. The majority of bladder cancer cell lines available were derived from Caucasians and established in the seventies or eighties. Thus, neoplasia development in these cells likely occurred in environment conditions vastly different than today. In the present study, we report the establishment and characterization of three Brazilian bladder cancer cell lines (BexBra1, BexBra2, and BexBra4). These cell lines may be helpful for dissecting the genetic and epigenetic aspects that trigger the progression of BC. Moreover, the development of a Brazilian representative of the disease will allow us to investigate the potential inter-racial differences of malignancy-associated phenotypes in bladder cancer.
Resumo:
Pulp softening is one of the most remarkable changes during ripening of papaya (Carica papaya) fruit and it is a major cause for post-harvest losses. Although cell wall catabolism has a major influence on papaya fruit, quality information on the gene products involved in this process is limited. A full-length polygalacturonase cDNA (cpPG) was isolated from papaya pulp and used to study gene expression and enzyme activity during normal and ethylene-induced ripening and after exposure of the fruit to 1-MCP. Northern-blot analysis demonstrated that cpPG transcription was strongly induced during ripening and was highly ethylene-dependent. The accumulation of cpPG transcript was paralleled by enzyme activity, and inversely correlated to the pulp firmness. Preliminary in silica analysis of the cpPG genomic sequence revealed the occurrence of putative regulatory motifs in the promoter region that may help to explain the effects of plant hormones and non-abiotic stresses on papaya fruit firmness. This newly isolated cpPG is an important candidate for functional characterization and manipulation to control the process of pulp softening during papaya ripening. (C) 2009 Elsevier Masson SAS. All rights reserved.
Resumo:
PURPOSE. To evaluate the relationship between pattern electroretinogram (PERG) amplitude, macular and retinal nerve fiber layer (RNFL) thickness by optical coherence tomography (OCT), and visual field (VF) loss on standard automated perimetry (SAP) in eyes with temporal hemianopia from chiasmal compression. METHODS. Forty-one eyes from 41 patients with permanent temporal VF defects from chiasmal compression and 41 healthy subjects underwent transient full-field and hemifield (temporal or nasal) stimulation PERG, SAP and time domain-OCT macular and RNFL thickness measurements. Comparisons were made using Student`s t-test. Deviation from normal VF sensitivity for the central 18 of VF was expressed in 1/Lambert units. Correlations between measurements were verified by linear regression analysis. RESULTS. PERG and OCT measurements were significantly lower in eyes with temporal hemianopia than in normal eyes. A significant correlation was found between VF sensitivity loss and fullfield or nasal, but not temporal, hemifield PERG amplitude. Likewise a significant correlation was found between VF sensitivity loss and most OCT parameters. No significant correlation was observed between OCT and PERG parameters, except for nasal hemifield amplitude. A significant correlation was observed between several macular and RNFL thickness parameters. CONCLUSIONS. In patients with chiasmal compression, PERG amplitude and OCT thickness measurements were significant related to VF loss, but not to each other. OCT and PERG quantify neuronal loss differently, but both technologies are useful in understanding structure-function relationship in patients with chiasmal compression. (ClinicalTrials.gov number, NCT00553761.) (Invest Ophthalmol Vis Sci. 2009; 50: 3535-3541) DOI:10.1167/iovs.08-3093
Resumo:
Type 1, X-linked Hyper-IgM syndrome (HIGM1) is caused by mutations in the gene encoding the CD154 protein, also known as CD40 ligand (CD40LG). CD40L is expressed in activated T cells and interacts with CD40 receptor expressed on B lymphocytes and dendritic cells. Affected patients present cellular and humoral immune defects, with infections by intracellular, opportunistic and extracellular pathogens. In the present study we investigated the molecular defects underlying disease in four patients with HIGM1. We identified four distinct CD40L mutations, two of them which have not been previously described. P1 harboured the novel p.G227X mutation which abolished CD40L expression. P2 had a previously described frame shift deletion in exon 2 (p.I53fsX65) which also prevented protein expression. P3 demonstrated the previously known p.V126D change in exon 4, affecting the TNF homology (TNFH) domain. Finally, P4 evidenced the novel p.F229L mutation also located in the TNFH domain. In silico analysis of F229L predicted the change to be pathological, affecting the many hydrophobic interactions of this residue. Precise molecular diagnosis in HIGM syndrome allows reliable detection of carriers, making genetic counselling and prenatal diagnosis possible.
Resumo:
Purpose: The aim of this study was to characterize the first 48-hour evolution of metabolic acidosis of adult patients with diabetic ketoacidosis admitted to the intensive care unit. Materials and Methods: We studied 9 patients retrieved from our prospective collected database, using the physicochemical approach to acid-base disturbances. Results: Mean (SD) age was 34 (13) years; mean (SD) Acute Physiology and Chronic Health Evaluation II score was 16 (10); mean (SD) blood glucose level on admission was 480 (144) mg/dL; mean (SD) pH was 7.17 (0.18); and mean (SD) standard base excess was -16.8 (7.7) mEq/L. On admission, a great part of metabolic acidosis was attributed to unmeasured anions (strong ion gap [SIG], 20 +/- 10 mEq/L), with a wide range of strong ion difference (41 +/- 10 mEq/L). During the first 48 hours of treatment, 297 +/- 180 IU of insulin and 9240 +/- 6505 mL of fluids were used. Metabolic improvement was marked by the normalization of pH, partial correction of standard base excess, and a reduction of hyperglycemia. There was a significant improvement of SIG (7.6 +/- 6.2 mEq/L) and a worsening of strong ion difference acidosis (36 +/- 5 mEq/L) in the first 24 hours, with a trend toward recuperation between 24 and 48 hours (38 +/- 6 mEq/L). Conclusion: Initial metabolic acidosis was due to SIG, and the treatment was associated with a significant decrease of SIG with an elevation of serum chloride above the normal range. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
Respiratory syncytial virus (RSV) is recognized as the leading cause of nosocomial respiratory infection among hematopoietic stem cell transplant (HSCT) recipients, causing considerable morbidity and mortality. RSV is easily transmitted by contact with contaminated surfaces, and in HSCT units, more than 50% of RSV infections have been characterized as of nosocomial origin. From April 2001 to October 2002, RSV was identified by direct immunofluorescent assay in 42 symptomatic HSCT recipients. Seven RSV strains from 2001 and 12 RSV strains from 2002 were sequenced. RNA extraction, cDNA synthesis, and seminested polymerase chain reaction (PCR) with primers complementary to RSV genes G and F were pet-formed. PCR products were analyzed by nucleotide sequencing of the C-terminal region of gene G for typing (in group A or B). Of the 7 strains analyzed in 2001, only 2 belonged to group B; the other 5 belonged to group A. Of these 7 strains, 3 were identical and were from recipients receiving outpatient care. In 2002, of the 12 strains analyzed, 3 belonged to group A and the other 9 belonged to group B. Of these 9 strains, 7 were genetically identical and were also from recipients receiving outpatient care. Therefore, multiple strains of RSV cocirculated in the hematopoietic stem cell transplant units (ward and outpatient units) between 2001 and 2002. Nosocomial transmission was more likely to occur at the HSCT outpatient unit than in the HSCT ward. Infection control practices should also be implemented in the outpatient setting.
Resumo:
Acidosis is a common and deleterious aspect of maintenance dialysis. Traditionally, it is considered to be an elevated anion gap acidosis caused by the inability to excrete nonvolatile anions. Stewart`s approach made it possible to identify real determinants of the acid-base status and allowed quantification of the components of these disturbances, especially the unmeasured anions. We performed a cross-sectional study to identify and quantify each component of acidosis in hemodialysis maintenance patients. Sixty-four maintenance hemodialysis patients and 14 controls were enrolled in this study. Gasometrical and biochemical analysis were performed before the midweek dialysis session. Quantitative physicochemical analysis was carried out using the Stewart methodology. Hemodialysis patients were found to have mild acidemia (mean pH: 7.33 +/- 0.06 versus 7.41 +/- 0.05) secondary to metabolic acidosis (serum bicarbonate: 18.8 +/- 0.26 versus 25.2 +/- 0.48 mEq/l). The metabolic acidosis was due to retention of unmeasured anions (6.5 +/- 0.29 versus 3.1 +/- 0.62 mEq/l), hyperchloremia (105.1 +/- 0.5 versus 101.8 +/- 0.7 mEq/l), and hyperphosphatemia (5.90 +/- 0.19 versus 3.66 +/- 0.14 mg/dl). Compared with control values, the unmeasured anions and hyperchloremia had a similar acidifying effect (3.4 and 3.3 mEq/l), corresponding to almost 90% of the metabolic acidosis. Unmeasured anions and hyperchloremia are important components of acidosis in maintenance hemodialysis, in addition to phosphorus. Future studies to determine the etiology and consequences of hyperchloremic acidosis are warranted.
Resumo:
Few data are available on autopsy-proven fatal asthma patients in Sao Paulo, Brazil. We characterized 73 asthma patients who were autopsied at the Servico de Verificacao de Obitos do Universidade de Sao Paulo between 1996 and 2004. An interview with the next of kin assessed socioeconomic status, history, and treatment of asthma. There were 42 women and 31 men. Fifty-six (76.7%) of them were older than 34 years. Sixty-three percent were Caucasians, 77.3% had < 8 years of schooling, and the median income was 1.6 times the minimum wage. Twenty-two patients (30.1%) were smokers and 14 (19.2%) were ex-smokers. Only 25 (34.2%) patients were regularly followed by a doctor. Only 12.3% received inhaled steroids. Thirty-five patients (47.9%) had moderate-to-severe asthma. Fifty-five (75.3%) deaths took place outside a hospital, We conclude that this population shares characteristics of severe or poorly controlled asthma, low educational and socioeconomic levels, and lack of medical care and of inhaled steroid use.
Resumo:
Stimulating neural electrodes are required to deliver charge to an environment that presents itself as hostile. The electrodes need to maintain their electrical characteristics (charge and impedance) in vivo for a proper functioning of neural prostheses. Here we design implantable multi-walled carbon nanotubes coating for stainless steel substrate electrodes, targeted at wide frequency stimulation of deep brain structures. In well-controlled, low-frequency stimulation acute experiments, we show that multi-walled carbon nanotube electrodes maintain their charge storage capacity (CSC) and impedance in vivo. The difference in average CSCs (n = 4) between the in vivo (1.111 mC cm(-2)) and in vitro (1.008 mC cm(-2)) model was statistically insignificant (p > 0.05 or P-value = 0.715, two tailed). We also report on the transcription levels of the pro-inflammatory cytokine IL-1 beta and TLR2 receptor as an immediate response to low-frequency stimulation using RT-PCR. We show here that the IL-1 beta is part of the inflammatory response to low-frequency stimulation, but TLR2 is not significantly increased in stimulated tissue when compared to controls. The early stages of neuroinflammation due to mechanical and electrical trauma induced by implants can be better understood by detection of pro-inflammatory molecules rather than by histological studies. Tracking of such quantitative response profits from better analysis methods over several temporal and spatial scales. Our results concerning the evaluation of such inflammatory molecules revealed that transcripts for the cytokine IL-1 beta are upregulated in response to low-frequency stimulation, whereas no modulation was observed for TLR2. This result indicates that the early response of the brain to mechanical trauma and low-frequency stimulation activates the IL-1 beta signaling cascade but not that of TLR2.