419 resultados para viscoelasticity, zero stress state
Resumo:
Previous studies have shown differences in clinical features of obsessive-compulsive disorder (OCD) between men and women, including mean age at onset of obsessive-compulsive symptoms (OCS), types of OCS, comorbid disorders, course, and prognosis. The aim of this study was to compare male and female Brazilian patients with OCD on several demographic and clinical characteristics. Three hundred thirty Outpatients with OCD (Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition [DSM-IV], criteria) who sought treatment at 3 Brazilian public universities and at 2 private practice clinics in the city of Sao Paulo were evaluated. The assessment instruments used were the Yale-Brown Obsessive-Compulsive Scale to evaluate OCD severity and symptoms, the Beck Depression and Anxiety Inventories, the Yale Global Tic Severity Scale, and the Structured Clinical Interview for Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, Axis I Disorders to assess psychiatric comorbidity. Fifty-five percent of the patients (n = 182) were men who were significantly more likely than women to be single and to present sexual, religious, and symmetry obsessions and mental rituals. They also presented earlier onset of OCS and earlier symptom interference in functioning, and significantly more comorbid tic disorders and posttraumatic stress disorder. Women, besides showing significantly higher mean scores in the Beck Depression and Anxiety Inventories, were more likely to present comorbid simple phobias, eating disorders in general and anorexia in particular, impulse control disorders in general, and compulsive buying and skin picking in particular. No significant differences were observed between sexes concerning family history of OCS or OCD, and global symptoms severity, either in obsession or compulsive subscale. The present study confirms the presence of sex-related differences described in other countries and cultures. The fact that the OCS start earlier and probably have a worse impact in men can eventually lead to more specific and efficacious treatment approaches for these patients. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
Prone position may delay the development of ventilator-induced lung injury (VILI), but the mechanisms require better elucidation. In experimental mild acute lung injury (ALI), arterial oxygen partial pressure (Pa(O2)), lung mechanics and histology, inflammatory markers [interleukin (IL)-6 and IL-1 beta], and type III procollagen (PCIII) mRNA expressions were analysed in supine and prone position. Wistar rats were randomly divided into two groups. In controls, saline was intraperitoneally injected while ALI was induced by paraquat. After 24-h, the animals were mechanically ventilated for 1-h in supine or prone positions. In ALI, prone position led to a better blood flow/tissue ratio both in ventral and dorsal regions and was associated with a more homogeneous distribution of alveolar aeration/tissue ratio reducing lung static elastance and viscoelastic pressure, and increasing end-expiratory lung volume and Pa(O2). PCIII expression was higher in the ventral than dorsal region in supine position, with no regional changes in inflammatory markers. In conclusion, prone position may protect the lungs against VILI, thus reducing pulmonary stress and strain. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Objective: To investigate the effects of low and high levels of positive end-expiratory pressure (PEEP), without recruitment maneuvers, during lung protective ventilation in an experimental model of acute lung injury (ALI). Design: Prospective, randomized, and controlled experimental study. Setting: University research laboratory. Subjects: Wistar rats were randomly assigned to control (C) [saline (0.1 ml), intraperitoneally] and ALI [paraquat (15 mg/kg), intra peritoneally] groups. Measurements and Main Results: After 24 hours, each group was further randomized into four groups (six rats each) at different PEEP levels = 1.5, 3, 4.5, or 6 cm H(2)O and ventilated with a constant tidal volume (6 mL/kg) and open thorax. Lung mechanics [static elastance (Est, L) and viscoelastic pressure (Delta P2, L)] and arterial blood gases were measured before (Pre) and at the end of 1-hour mechanical ventilation (Post). Pulmonary histology (light and electron microscopy) and type III procollagen (PCIII) messenger RNA (mRNA) expression were measured after 1 hour of mechanical ventilation. In ALI group, low and high PEEP levels induced a greater percentage of increase in Est, L (44% and 50%) and Delta P2, L (56% and 36%) in Post values related to Pre. Low PEEP yielded alveolar collapse whereas high PEEP caused overdistension and atelectasis, with both levels worsening oxygenation and increasing PCIII mRNA expression. Conclusions: In the present nonrecruited ALI model, protective mechanical ventilation with lower and higher PEEP levels than required for better oxygenation increased Est, L and Delta P2, L, the amount of atelectasis, and PCIII mRNA expression. PEEP selection titrated for a minimum elastance and maximum oxygenation may prevent lung injury while deviation from these settings may be harmful. (Crit Care Med 2009; 37:1011-1017)
Resumo:
The impact of particle emissions by biomass burning is increasing throughout the world. We explored the toxicity of particulate matter produced by sugar cane burning and compared these effects with equivalent mass of traffic-derived particles. For this purpose, BALB/c mice received a single intranasal instillation of either distilled water (C) or total suspended particles (15 mu g) from an urban area (SP group) or biomass burning-derived particles (Bio group). Lung mechanical parameters (total, resistive and viscoelastic pressures, static elastance, and elastic component of viscoelasticity) and histology were analyzed 24h after instillation. Trace elements and polycyclic aromatic hydrocarbons (PAHs) metabolites of the two sources of particles were determined. All mechanical parameters increased similarly in both pollution groups compared with control, except airway resistive pressure, which increased only in Bio. Both exposed groups showed significantly higher fraction area of alveolar collapse, and influx of polymorphonuclear cells in lung parenchyma than C. The composition analysis of total suspended particles showed higher concentrations of PAHs and lower concentration of metals in traffic than in biomass burning-derived particles. In conclusion, we demonstrated that a single low dose of ambient particles, produced by traffic and sugar cane burning, induced significant alterations in pulmonary mechanics and lung histology in mice. Parenchymal changes were similar after exposure to both particle sources, whereas airway mechanics was more affected by biomass-derived particles. Our results indicate that biomass particles were at least as toxic as those produced by traffic. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
Objective: In acute lung injury, recruitment maneuvers have been used to open collapsed lungs and set positive end-expiratory pressure, but their effectiveness may depend on the degree of lung injury. This study uses a single experimental model with different degrees of lung injury and tests the hypothesis that recruitment maneuvers may have beneficial or deleterious effects depending on the severity of acute lung injury. We speculated that recruitment maneuvers may worsen lung mechanical stress in the presence of alveolar edema. Design: Prospective, randomized, controlled experimental study. Setting: University research laboratory. Subjects: Thirty-six Wistar rats randomly divided into three groups (n = 12 per group). Interventions: In the control group, saline was intraperitoneally injected, whereas moderate and severe acute lung injury animals received paraquat intraperitoneally (20 mg/kg [moderate acute lung injury] and 25 mg/kg [severe acute lung injury]). After 24 hrs, animals were further randomized into subgroups (n = 6/each) to be recruited (recruitment maneuvers: 40 cm H(2)O continuous positive airway pressure for 40 secs) or not, followed by 1 hr of protective mechanical ventilation (tidal volume, 6 mL/kg; positive end-expiratory pressure, 5 cm H(2)O). Measurements and Main Results: Only severe acute lung injury caused alveolar edema. The amounts of alveolar collapse were similar in the acute lung injury groups. Static lung elastance, viscoelastic pressure, hyperinflation, lung, liver, and kidney cell apoptosis, and type 3 procollagen and interleukin-6 mRNA expressions in lung tissue were more elevated in severe acute lung injury than in moderate acute lung injury. After recruitment maneuvers, static lung elastance, viscoelastic pressure, and alveolar collapse were lower in moderate acute lung injury than in severe acute lung injury. Recruitment maneuvers reduced interleukin-6 expression with a minor detachment of the alveolar capillary membrane in moderate acute lung injury. In severe acute lung injury, recruitment maneuvers were associated with hyperinflation, increased apoptosis of lung and kidney, expression of type 3 procollagen, and worsened alveolar capillary injury. Conclusions: In the presence of alveolar edema, regional mechanical heterogeneities, and hyperinflation, recruitment maneuvers promoted a modest but consistent increase in inflammatory and fibrogenic response, which may have worsened lung function and potentiated alveolar and renal epithelial injury. (Crit Care Med 2010; 38: 2207-2214)
Can LASSBio 596 and dexamethasone treat acute lung and liver inflammation induced by microcystin-LR?
Resumo:
The treatment of microcystin-LR (MCYST-LR)-induced lung inflammation has never been reported Hence. LASSBio 596, an anti-Inflammatory drug candidate, designed as symbiotic agent that modulates TNF-alpha levels and inhibits phosphodiesterase types 4 and 5, or dexamethasone were tested in this condition Swiss mice were intraperitoneally (i p) injected with 60 mu l of saline (CTRL) or a sub-lethal dose of MCYST-LR (40 mu g/kg). 6 h later they were treated (i p.) with saline (TOX), LASSB10 596 (10 mg/kg, L596), or dexamethasone (1 mg/kg, 0.1 mL, DEXA). 8 h after MCYST-LR injection, pulmonary mechanics were determined, and lungs and livers prepared for histopathology, biochemical analysis and quantification of MCYST-LR. TOX showed significantly higher lung impedance than CTRL and L596, which were similar. DEXA could only partially block the mechanical alterations. In both TOX and DEXA alveolar collapse and inflammatory cell influx were higher than in CTRL and L596, being LASSB10 596 more effective than dexamethasone. TOX showed oxidative stress that was not present in an and L596, while DEXA was partially efficient. MCYST-LR was detected in the livers of all mice receiving MCYST-LR and no recovery was apparent In conclusion, LASSBio 596 was more efficient than dexamethasone in reducing the pulmonary functional impairment induced by MCYST-LR. (C) 2010 Elsevier Ltd. All rights reserved
Resumo:
We evaluated if repeated stress modulates mucociliary clearance and inflammatory responses in airways of guinea pigs (GP) with chronic inflammation. The GP received seven exposures of ovalbumin or saline 0.9%. After 4th inhalation, animals were submitted to repeated forced swim stressor protocol (5x/week/2 weeks). After 7th inhalation, GP were anesthetized. We measured transepithelial potential difference, ciliary beat frequency, mucociliary transport, contact angle, cough transportability and serum cortisol levels. Lungs and adrenals were removed, weighed and analyzed by morphometry. Ovalbumin-exposed animals submitted to repeated stress had a reduction in mucociliary transport, and an increase on serum cortisol, adrenals weight, mucus wettability and adhesivity, positive acid mucus area and IL-4 positive cells in airway compared to non-stressed ovalbumin-exposed animals (p < 0.05). There were no effects on eosinophilic recruitment and IL-13 positive cells. Repeated stress reduces mucociliary clearance due to mucus theological-property alterations, increasing acid mucus and its wettability and adhesivity. These effects seem to be associated with IL-4 activation. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Along the aluminum refining process, alumina (Al(2)O(3)) constitutes the main source of dust. Although aluminum refinery workers present respiratory symptoms with lung functional changes, no conclusive data about lung function impairment after alumina exposure has been so far reported. We examined the pulmonary alterations of exposure to material collected in an aluminum refinery in Brazil. BALB/c mice were exposed in a whole-body chamber for 1 h to either saline (CTRL, n = 11) or to a suspension (in saline) of 8 mg/m(3) of the dust (ALUM, n = 11) both delivered by an ultrasonic nebulizer. Twenty-four hours after exposure lung mechanics were measured by the end-inflation method. Lungs were prepared for histology. ALUM showed significantly higher static elastance (34.61 +/- 5.76 cmH(2)O/mL), elastic component of viscoelasticity (8.16 +/- 1.20 cmH(2)O/mL), pressure used to overcome the resistive component of viscoelasticity (1.62 +/- 0.24 cmH(2)O), and total resistive pressure (2.21 +/- 0.49 cmH(2)O) than CTRL (27.95 +/- 3.63 cmH(2)O/mL, 6.12 +/- 0.99 cmH(2)O/mL, 1.23 +/- 0.19 cmH(2)O, and 1.68 +/- 0.23 cmH(2)O, respectively). ALUM also presented significantly higher fraction area of alveolar collapse (69.7 +/- 1.2%) and influx of polymorphonuclear cells (27.5 +/- 1.1%) in lung parenchyma than CTRL (27.2 +/- 1.1% and 14.6 +/- 0.7%, respectively). The composition analysis of the particulate matter showed high concentrations of aluminum. For the first time it was demonstrated in an experimental model that an acute exposure to dust collected in an aluminum producing facility impaired lung mechanics that could be associated with inflammation.
Resumo:
Introduction: Recruitment maneuvers (RMs) seem to be more effective in extrapulmonary acute lung injury (ALI), caused mainly by sepsis, than in pulmonary ALI. Nevertheless, the maintenance of adequate volemic status is particularly challenging in sepsis. Since the interaction between volemic status and RMs is not well established, we investigated the effects of RMs on lung and distal organs in the presence of hypovolemia, normovolemia, and hypervolemia in a model of extrapulmonary lung injury induced by sepsis. Methods: ALI was induced by cecal ligation and puncture surgery in 66 Wistar rats. After 48 h, animals were anesthetized, mechanically ventilated and randomly assigned to 3 volemic status (n = 22/group): 1) hypovolemia induced by blood drainage at mean arterial pressure (MAP)approximate to 70 mmHg; 2) normovolemia (MAP approximate to 100 mmHg), and 3) hypervolemia with colloid administration to achieve a MAP approximate to 130 mmHg. In each group, animals were further randomized to be recruited (CPAP = 40 cm H(2)O for 40 s) or not (NR) (n = 11/group), followed by 1 h of protective mechanical ventilation. Echocardiography, arterial blood gases, static lung elastance (Est, L), histology (light and electron microscopy), lung wet-to-dry (W/D) ratio, interleukin (IL)-6, IL-1 beta, caspase-3, type III procollagen (PCIII), intercellular adhesion molecule-1 (ICAM-1), and vascular cell adhesion molecule-1 (VCAM-1) mRNA expressions in lung tissue, as well as lung and distal organ epithelial cell apoptosis were analyzed. Results: We observed that: 1) hypervolemia increased lung W/D ratio with impairment of oxygenation and Est, L, and was associated with alveolar and endothelial cell damage and increased IL-6, VCAM-1, and ICAM-1 mRNA expressions; and 2) RM reduced alveolar collapse independent of volemic status. In hypervolemic animals, RM improved oxygenation above the levels observed with the use of positive-end expiratory pressure (PEEP), but increased lung injury and led to higher inflammatory and fibrogenetic responses. Conclusions: Volemic status should be taken into account during RMs, since in this sepsis-induced ALI model hypervolemia promoted and potentiated lung injury compared to hypo-and normovolemia.
Resumo:
Exposure to air pollution can elicit cardiovascular health effects. Children and unborn fetuses appear to be particularly vulnerable. However, the mechanisms involved in cardiovascular damage are poorly understood. It has been suggested that the oxidative stress generated by air pollution exposure triggers tissue injury. To investigate whether prenatal exposure can enhance oxidative stress in myocardium of adult animals, mice were placed in a clean chamber (CC, filtered urban air) and in a polluted chamber (PC, Sao Paulo city) during the gestational period and/or for 3 mo after birth, according to 4 protocols: control group-prenatal and postnatal life in CC; prenatal group-prenatal in PC and postnatal life in CC; postnatal group-prenatal in CC and postnatal life in PC; and pre-post group-prenatal and postnatal life in PC. As an indicator of oxidative stress, levels of lipid peroxidation in hearts were measured by malondialdehyde (MDA) quantification and by quantification of the myocardial immunoreactivity for 15-F2t-isoprostane. Ultrastructural studies were performed to detect cellular alterations related to oxidative stress. Concentration of MDA was significantly increased in postnatal (2.45 +/- 0.84 nmol/mg) and pre-post groups (3.84 +/- 1.39 nmol/mg) compared to the control group (0.31 +/- 0.10 nmol/mg) (p < .01). MDA values in the pre-post group were significantly increased compared to the prenatal group (0.71 +/- 0.15 nmol/mg) (p = .017). Myocardial isoprostane area fraction in the pre-post group was increased compared to other groups (p <= .01). Results show that ambient levels of air pollution elicit cardiac oxidative stress in adult mice, and that gestational exposure may enhance this effect.
Resumo:
Background Although significant associations of childhood adversities with adult mental disorders are widely documented, most studies focus on single childhood adversities predicting single disorders. Aims To examine joint associations of 12 childhood adversities with first onset of 20 DSM-IV disorders in World Mental Health (WMH) Surveys in 21 countries. Method Nationally or regionally representative surveys of 51 945 adults assessed childhood adversities and lifetime DSM-IV disorders with the WHO Composite International Diagnostic Interview (CIDI). Results Childhood adversities were highly prevalent and interrelated. Childhood adversities associated with maladaptive family functioning (e.g. parental mental illness, child abuse, neglect) were the strongest predictors of disorders. Co-occurring childhood adversities associated with maladaptive family functioning had significant subadditive predictive associations and little specificity across disorders. Childhood adversities account for 29.8% of all disorders across countries. Conclusions Childhood adversities have strong associations with all classes of disorders at all life-course stages in all groups of WMH countries. Long-term associations imply the existence of as-yet undetermined mediators.
Resumo:
Objective: We aimed to investigate the efficacy of 20 Hz repetitive transcranial magnetic stimulation (rTMS) of either right or left dorsolateral prefrontal cortex (DLPFC) as compared to sham rTMS for the relief of posttraumatic stress disorder (PTSD)-associated symptoms. Method: In this double-blind, placebo-controlled phase II trial conducted between October 2005 and July 2008, 30 patients with DSM-IV-diagnosed PTSD were randomly assigned to receive 1 of the following treatments: active 20 Hz rTMS of the right DLPFC, active 20 Hz rTMS of the left DLPFC, or sham rTMS. Treatments were administered in 10 daily sessions over 2 weeks. A blinded rater assessed severity of core PTSD symptoms, depression, and anxiety before, during, and after completion of the treatment protocol. In addition, a battery of neuropsychological tests was measured before and after treatment. Results: Results show that both active conditions-20 Hz rTMS of left and right DLPFC induced a significant decrease in PTSD symptoms as indexed by the PTSD Checklist and Treatment Outcome PTSD Scale; however, right rTMS induced a larger effect as compared to left rTMS. In addition, there was a significant improvement of mood after left rTMS and a significant reduction of anxiety following right rTMS. Improvements in PTSD symptoms were long lasting; effects were still significant at the 3-month follow-up. Finally, neuropsychological evaluation showed that active 20 Hz rTMS is not associated with cognitive worsening and is safe for use in patients with PTSD. Conclusions: These results support the notion that modulation of prefrontal cortex can alleviate the core symptoms of PTSD and suggest that high-frequency rTMS of right DLPFC might be the optimal treatment strategy. J an Psychiatry 2010;71(8):992-999 (C) Copyright 2009 Physicians Postgraduate Press, Inc.
Resumo:
Background. Subsequent ischaemic episodes may induce renal resistance. P21 is a cell cycle inhibitor that may be induced by oxygen-free radicals and may have a protective effect in ischaemic acute kidney injury (AKI). This study aimed at evaluating the role of oxidative stress and p21 on tubular resistance in a model of acquired resistance after renal ischaemia and in isolated renal tubules. Methods. Wistar rats were divided into: Group 1-sham; Group 2-sham operated and after 2 days submitted to 45-min ischaemia; and Group 3-45-min ischaemia followed after 2 days by a second 45-min ischaemia. Plasma urea was evaluated on Days 0, 2 and 4. Serum creatinine, creatinine clearance and oxidants (thiobarbituric acid-reactive substances) were determined 48 h after the second procedure (Day 4). Histology, immunohistochemistry for lymphocytes (CD3), macrophages (ED1), proliferation (PCNA) and apoptosis (TUNEL) were also evaluated. Rat proximal tubules (PTs) were isolated by collagenase digestion and Percoll gradient from control rats and rats previously subjected to 35 min of ischaemia. PTs were submitted to 15-min hypoxia followed by 45-min reoxygenation. Cell injury was assessed by lactate dehydrogenase release and hydroperoxide production (xylenol orange). Results. Ischaemia induced AKI in Group 2 and 3 rats. Subsequent ischaemia did not aggravate renal injury, demonstrating renal resistance (Group 3). Renal function recovery was similar in Group 2 and 3. Plasma and urine oxidants were similar among in Group 2 and 3. Histology disclosed acute tubular necrosis in Group 2 and 3. Lymphocyte infiltrates were similar among all groups whereas macrophages infiltrate was greater in Group 3. Cell proliferation was greater in Group 2 compared with Group 3. Apoptosis was similar in groups 2 and 3. The p21 expression was increased only in Group 3 whereas it was similar in groups 1 and 2. PTs from the ischaemia group were sensitive to hypoxia but resistant to reoxygenation injury which was followed by lower hydroperoxide production compared to control PT. Conclusion. Renal resistance induced by ischaemia was associated with cell mechanism mediators involving oxidative stress and increased p21 expression.
Resumo:
Background: Difficulties in emotion processing and poor social function are common to bipolar disorder (BD) and major depressive disorder (MDD) depression, resulting in many BID depressed individuals being misdiagnosed with MDD. The amygdala is a key region implicated in processing emotionally salient stimuli, including emotional facial expressions. It is unclear, however, whether abnormal amygdala activity during positive and negative emotion processing represents a persistent marker of BD regardless of illness phase or a state marker of depression common or specific to BID and MDD depression. Methods: Sixty adults were recruited: 15 depressed with BID type 1 (BDd), 15 depressed with recurrent MDD, 15 with BID in remission (BDr), diagnosed with DSM-IV and Structured Clinical Interview for DSM-IV Research Version criteria; and 15 healthy control subjects (HC). Groups were age- and gender ratio-matched; patient groups were matched for age of illness onset and illness duration; depressed groups were matched for depression severity. The BDd were taking more psychotropic medication than other patient groups. All individuals participated in three separate 3T neuroimaging event-related experiments, where they viewed mild and intense emotional and neutral faces of fear, happiness, or sadness from a standardized series. Results: The BDd-relative to HC, BDr, and MDD-showed elevated left amygdala activity to mild and neutral facial expressions in the sad (p < .009) but not other emotion experiments that was not associated with medication. There were no other significant between-group differences in amygdala activity. Conclusions: Abnormally elevated left amygdala activity to mild sad and neutral faces might be a depression-specific marker in BID but not MDD, suggesting different pathophysiologic processes for BD versus MDD depression.
Resumo:
Background: Amygdala-orbitofrontal cortical (OFC) functional connectivity (FC) to emotional stimuli and relationships with white matter remain little examined in bipolar disorder individuals (BD). Methods: Thirty-one BD (type 1; n = 17 remitted; n = 14 depressed) and 24 age- and gender-ratio-matched healthy individuals (HC) viewed neutral, mild, and intense happy or sad emotional faces in two experiments. The FC was computed as linear and nonlinear dependence measures between amygdala and OFC time series. Effects of group, laterality, and emotion intensity upon amygdala-OFC FC and amygdala-OFC FC white matter fractional anisotropy (FA) relationships were examined. Results: The BD versus HC showed significantly greater right amygdala-OFC FC (p <= .001) in the sad experiment and significantly reduced bilateral amygdala-OFC FC (p = .007) in the happy experiment. Depressed but not remitted female BD versus female HC showed significantly greater left amygdala-OFC FC (p = .001) to all faces in the sad experiment and reduced bilateral amygdala-OFC FC to intense happy faces (p = .01). There was a significant nonlinear relationship (p = .001) between left amygdala-OFC FC to sad faces and FA in HC. In BD, antidepressants were associated with significantly reduced left amygdala-OFC FC to mild sad faces (p = .001). Conclusions: In BD, abnormally elevated right amygdala-OFC FC to sad stimuli might represent a trait vulnerability for depression, whereas abnormally elevated left amygdala-OFC FC to sad stimuli and abnormally reduced amygdala-OFC FC to intense happy stimuli might represent a depression state marker. Abnormal FC measures might normalize with antidepressant medications in BD. Nonlinear amygdala-OFC FC-FA relationships in BID and HC require further study.