358 resultados para Herpesvirus 5, Bovine
Resumo:
It has been suggested that fluoride products are able to reduce erosive tooth wear. Thus, the purpose of this in vitro study was to evaluate the effect of dentifrices with different fluoride concentrations as well as of a low-fluoridated dentifrice supplemented with trimetaphosphate (TMP) on enamel erosion and abrasion. One hundred twenty bovine enamel blocks were assigned to the following experimental dentifrices: placebo, 1,100 mu g F/g, 500 mu g F/g plus 3% TMP and 5,000 mu g F/g. The groups of enamel blocks were additionally subdivided into conditions of erosion (ERO) and of erosion plus abrasion (ERO + ABR). For 7 days, the blocks were subjected to erosive challenges (immersion in Sprite (R) 4 times a day for 5 min each time) followed by a remineralizing period (immersion in artificial saliva between erosive challenges for 2 h). After each erosive challenge, the blocks were exposed to slurries of the dentifrices (10 ml/sample for 15 s). Sixty of the blocks were additionally abraded by brushing using an electric toothbrush (15 s). The alterations of the enamel were quantified using the Knoop hardness test and profilometry (measurements in micrometers). The data were analyzed using a 2-way ANOVA test followed by a Bonferroni correction (p < 0.05). In in vitro conditions, the 5,000 mu g F/g and 500 mu g F/g plus 3% TMP dentifrices had a greater protective effect when compared with the 1,100 mu g F/g dentifrice, under both ERO and ERO + ABR conditions. The results suggest that dentifrices alone are not capable of completely inhibiting tooth wear. Copyright (C) 2010 S. Karger AG, Basel
Resumo:
It is known that some metal salts can inhibit matrix metalloproteinase (MMP) activity, but the effect of iron has not been tested yet. On the other hand, it has recently been suggested that MMP inhibition might influence dentine erosion. Based on this, the aims of this study were: (1) to test in vitro the effect of FeSO(4) on MMP-2 and -9 activity, and (2) to evaluate in situ the effect of FeSO(4) gel on dentine erosion. MMP-2 and -9 activities were analysed zymographically in buffers containing FeSO(4) in concentrations ranging between 0.05 and 1.5 mmol/l or not. Volunteers (n = 10) wore devices containing bovine dentine blocks (n = 60) previously treated with the following gel treatments: FeSO(4) (1 mmol/l FeSO(4)), F (NaF 1.23%; positive control) and placebo (negative control). The gels were applied once and removed after 1 min. Erosion was performed extraorally with Coca-Cola 4 times per day for 5 min over 5 days. Dentine wear was evaluated by profilometry. The data were analysed by Kruskal-Wallis and Dunn`s tests (p < 0.05). FeSO(4) inhibited both MMP-2 (IC(50) = 0.75 mmol/l) and MMP-9 (IC(50) = 0.50 mmol/l) activities. In the in situ experiment, the mean wear (+/- SD) found for the F gel (0.79 8 +/- 0.08 mu m) was significantly reduced in more than 50% when compared to the placebo gel (1.77 +/- 0.33 mu m), but the FeSO(4) gel completely inhibited the wear (0.05 +/- 0.02 mu m). Since FeSO(4) was able to inhibit MMP in vitro, it is possible that the prevention of dentine wear by the FeSO(4) gel in situ might be due to MMP inhibition, which should be investigated in further studies. Copyright (C) 2010 S. Karger AG, Basel
Resumo:
Objective: This study aimed to compare the effects 0.5% and 1% sodium, amine and stannous fluoride at different pH on enamel erosion in vitro. Methods: Bovine enamel samples were submitted to a cyclic de- and remineralisation for 3 days. Each day, the samples were exposed for 120 min to pooled human saliva and subsequently treated with one of the fluoride solutions for 3 min: amine fluoride (AmF, 0.5% and 1% F(-)), sodium fluoride (NaF, 0.5% and 1% F(-)), each at pH 3.9 and 7.0, and stannous fluoride (SnF(2), 0.5% and 1% F-), at pH: 3.9. Additionally, two groups were treated with fluoride-free placebo solutions (pH: 3.9 and 7.0) and one group served as control (no fluoridation). Ten specimens each group were inserted in a so-called artificial mouth and eroded six times daily with hydrochloric acid (pH 2.6) for 90 s each intermitted by exposure to artificial saliva (1 h). After 3 days, enamel loss was analyzed profilometrically and evaluated statistically by ANOVA. Results: Only the acidic 0.5% and 1% SnF(2) and 1% AmF solutions were able to reduce erosive enamel loss significantly, while all other solutions and placebos did not differ significantly from the control. Between the acidic SnF(2) and the 1% AmF solutions no significant differences could be detected. Conclusion: At the same concentrations, acidic SnF(2) and AmF may be more effective than NaF to protect enamel against erosion. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The aims of this study were: (1) to correlate surface (SH) and cross-sectional hardness (CSH) with microradiographic parameters of artificial enamel lesions; (2) to compare lesions prepared by different protocols. Fifty bovine enamel specimens were allocated by stratified randomisation according to their initial SH values to five groups and lesions produced by different methods: MC gel (methylcellulose gel/lactic acid, pH 4.6, 14 days); PA gel (polyacrylic acid/lactic acid/hydroxyapatite, pH 4.8, 16 h); MHDP (undersaturated lactate buffer/methyl diphosphonate, pH 5.0, 6 days); buffer (undersaturated acetate buffer/fluoride, pH 5.0, 16 h), and pH cycling (7 days). SH of the lesions (SH(1)) was measured. The specimens were longitudinally sectioned and transverse microradiography (TMR) and CSH measured at 10- to 220-mu m depth from the surface. Overall, there was a medium correlation but non-linear and variable relationship between mineral content and root CSH. root SH(1) was weakly to moderately correlated with surface layer properties, weakly correlated with lesion depth but uncorrelated with integrated mineral loss. MHDP lesions showed the highest subsurface mineral loss, followed by pH cycling, buffer, PA gel and MC gel lesions. The conclusions were: (1) CSH, as an alternative to TMR, does not estimate mineral content very accurately, but gives information about mechanical properties of lesions; (2) SH should not be used to analyse lesions; (3) artificial caries lesions produced by the protocols differ, especially considering the method of analysis. Copyright (C) 2009 S. Karger AG, Basel
Resumo:
This in vitro study evaluated the effect of a prolonged erosive pH cycling on the superficial microhardness change (SMHC) and the erosive wear of different restorative materials. Eighty enamel specimens with prepared cavities of 1.5 x 1.5 mm were randomly divided into eight groups according to the restorative materials used for the fillings (RMGI - resin-modified glass-ionomer, CGI - conventional glass-ionomer, CR- composite resin, A - amalgam) and immersion media used (ERO - erosive medium or SAL - artificial saliva). During 35 days, half of the specimens were immersed in a cola drink (ERO), for 5 min, three times a day, and they remained in SAL between the erosive cycles. The other half of the specimens was immersed in SAL only, for the entire experimental period (control). Data were tested for significant differences by anova and Tukey`s tests (P < 0.05). Scanning electron microscopy images were made to illustrate the enamel erosive wear and restorative materials alterations. The mean SMHC (%) and mean erosive wear (mu m) of the materials were: RMGI-ERO (30/0.5); CGI-ERO (37/0.5); CR-ERO (-0.3/0.3); A-ERO (-4/0.3); RMGI-SAL (4/0.4); CGI-SAL (-6/0.4); CR-SAL (-3/0.2) and A-SAL (2/0.4). Scanning electron microscopy images showed pronounced enamel erosive wear on groups submitted to erosive pH cycling when compared with groups maintained in saliva. In conclusion, the prolonged pH cycling promoted significantly higher alterations (SMHC and erosive wear) on the glass-ionomer cements than the CR and amalgam.
Resumo:
This in vitro study evaluated the effect of erosive pH cycling on the percentage of surface micro-hardness change (%SMHC) and wear of different restorative materials and bovine enamel restored with these materials. Eighty enamel specimens were randomly divided into eight groups according to the restorative materials and immersion media used: GI/GV-resin-modifled glass-ionomer, GII/GVI-conventional glass-ionomer, GIII/GVII-resin composite and GIV/GVIII-amalgam. Over a period of seven days, groups GI to GIV were immersed in a cola drink (ERO) for 5 minutes, 3x/day and kept in artificial saliva between erosive cycles. Groups GV to GVIII were immersed in artificial saliva (SAL) throughout the entire experimental period (control). Data were tested for significant differences using ANOVA and Tukey`s tests (p < 0.05). For %SMHC, considering the restorative materials, no significant differences were detected among the materials and immersion media. Mean wear was higher for the resin modified glass ionomer cement when compared to conventional cement, but those materials did not significantly differ from the others. For enamel analyses, erosive pH cycling promoted higher wear and %SMHC compared to saliva. There were no significant differences in wear and %SMHC of enamel around the different restorative materials, regardless of the distance from the restorative material (50, 150 or 300 mu m). In conclusion, there were only subtle differences among the materials, and these differences were not able to protect the surrounding enamel from erosion.
Resumo:
This in situ/ex vivo study assessed the effect of different concentrations of fluoride in dentifrices on dentin subjected to erosion or to erosion plus abrasion. Ten volunteers took part in this crossover and double-blind study performed in 3 phases (7 days). They wore acrylic palatal appliances containing 4 bovine dentin blocks divided in two rows: erosion and erosion plus abrasion. The blocks were subjected to erosion by immersion ex vivo in a cola drink (60 s, pH 2.6) 4 times daily. During this step, the volunteers brushed their teeth with one of three dentifrices D (5,000 ppm F, NaF, silica); C (1,100 ppm F, NaF, silica) and placebo (22 ppm F, silica). Then, the respective dentifrice slurry (1: 3) was dripped on dentin surfaces. While no further treatment was performed in one row, the other row was brushed using an electric toothbrush for 30 s ex vivo. The appliances were replaced in the mouth and the volunteers rinsed with water. Dentin loss was determined by profilometry and analyzed by 2-way ANOVA/Bonferroni test (alpha = 0.05). Dentin loss after erosive-abrasive wear was significantly greater than after erosion alone. Wear was significantly higher for the placebo than for the D and C dentifrices, which were not significantly different from each other. It can be concluded that the presence of fluoride concentrations around 1,100 ppm in dentifrices is important to reduce dentin wear by erosion and erosion + abrasion, but the protective effect does not increase with fluoride concentration. Copyright (C) 2008 S. Karger AG, Basel.
Resumo:
This in vitro study assessed the effect of an experimental 4% TiF(4) varnish compared to commercial NaF and NaF/CaF(2) varnishes and 4% TiF(4) solution on enamel erosion. For this, 72 bovine enamel specimens were randomly allocated to the following treatments: NaF varnish (2.26% F), NaF/CaF(2) varnish (5.63% F), 4% TiF(4) varnish (2.45% F), F-free placebo varnish, 4% TiF(4) solution (2.45% F) and control (not treated). The varnishes were applied in a thin layer and removed after 6 h. The solution was applied to the enamel surface for 1 min. Then, the specimens were alternately de- and remineralized (6 times/day) in an artificial mouth for 5 days at 37 degrees C. Demineralization was performed with the beverage Sprite (1 min, 3 ml/min) and remineralization with artificial saliva (day: 59 min, 0.5 ml/min; during the night: 0.1 ml/min). The mean daily increment of erosion and the cumulative erosion data were tested using ANOVA and ANCOVA, respectively, followed by Tukey`s test (alpha = 0.05). The mean daily erosion increments and cumulative erosion (micrometers) were significantly less for the TiF(4) varnish (0.30 +/- 0.11/0.65 +/- 0.75) than for the NaF varnish (0.58 +/- 0.11/1.47 +/- 1.07) or the NaF/CaF(2) varnish (0.62 +/- 0.10/1.68 +/- 1.17), which in turn showed significantly less erosion than the placebo varnish (0.78 +/- 0.12/2.05 +/- 1.43), TiF(4) solution (0.86 +/- 0.11/2.05 +/- 1.49) and control (0.77 +/- 0.16/2.06 +/- 1.49). In conclusion, the TiF(4) varnish seems to be a promising treatment to reduce enamel loss under mild erosive conditions. Copyright (C) 2008 S. Karger AG, Basel.
Resumo:
Our purpose was to evaluate the osteoconduction potential of mixed bovine bone (MBB) xenografts as an alternative for bone grafting of critical-size defects in the calvaria of rats. After surgery, in the time intervals of 1, 3, 6, and 9 months, rats were killed and their skulls collected, radiographed and histologically prepared for analysis. The data obtained from histological analysis reported that the particles of MBB did not promote an intense immunological response, evidencing its biocompatibility in rats. Our results clearly showed the interesting evidence that MBB was not completely reabsorbed at 9 months while a small amount of newly formed bone was deposited by osteoprogenitor cells bordering the defect. However, this discrete bone-forming stimulation was unable to regenerate the bone defect. Overall, our results suggest that the properties of MBB are not suitable for stimulating intense bone regeneration in critical bone defects in rats.
Resumo:
Objective: As resin-modified glass-ionomer cement (RMGIC) is an adhesive material, its association to dentin bonding agents (DBAs) was previously proposed. This study investigated the adjunctive behavior of an RMGIC with etch-and-rinse bonding systems under in situ/ex vivo cariogenic challenge. Method and Materials: Bovine enamel blocks (3 3 2 mm) were randomly assigned to group VP, Vitremer + its own primer (3M ESPE); group VSB, Vitremer + Single Bond (3M ESPE); and group VPB, Vitremer + Prime & Bond 2.1 (Dentsply). Two blocks of each group were randomly placed in an acrylic palatal appliance, so each appliance included six blocks. Volunteers (n = 10) wore these appliances according to given instructions to promote a sucrose challenge eight times/day for 15 days. After this period, the blocks were removed from the devices and cleaned, and demineralization was assessed through longitudinal microhardness analysis (Knoop indenter, 25 g/5 s). Data were submitted to three-way ANOVA and Tukey test (P < .05). Results: No treatment was able to completely avoid demineralization. All materials showed a statistically significant difference in mineral loss when the microhardness on the outer enamel was compared with deeper regions (P < .05). Conclusion: Association of the tested RMGICs with etch-and-rinse DBAs did not seem to be more beneficial against caries than the conventional treatment with RMGIC. (Quintessence Int 2010; 41: e192-e199)
Resumo:
Introduction: The present study evaluated the effect of a reducing agent on the bond strength of deproteinized root canal dentin surfaces when using a self-adhesive versus dual-cured cement. Regional differences were also evaluated. Methods: A total of 45 bovine incisor roots were divided into 3 groups: irrigation with physiologic solution (control), 10-minute deproteinization with 5% NaOCl, and 10-minute deproteinization with 5% NaOCl followed by 10 minutes of 10% ascorbic acid. Fiber posts were cemented with either RelyX 0100 or RelyX ARC (with SingleBond 2 or Clearfil SE Bond). The push-out bond strength was evaluated after 24 hours of storage. Data were submitted to three-way analyses of variance and Dunnett 13 tests (alpha = 0.05). Results: No differences between cements were observed within the testing conditions, regardless of the adhesive (P < .05). Deproteinization reduced bond strengths. Subsequent treatment with ascorbic acid was capable of reversing bond strength value changes to levels similar to those of controls. Regional radicular differences were also found, where coronal > middle > apical. Conclusions: The reducing agent was capable. of reversing the effect of dentin deproteinization, and RelyX U100 behaved similarly to RelyX ARC. (J Endod 2010;36:130-134)
Resumo:
Introduction: The aim of this study was to evaluate the biofilm dissolution and cleaning ability of different irrigant solutions on intraorally infected dentin. Methods: One hundred twenty bovine dentin specimens were infected intraorally by using a removable orthodontic device. Thirty samples were used for each irrigant solution: 2% chlorhexidine and 1%, 2.5%, and 5.25% sodium hypochlorite (NaOCl). The solutions were used for 5, 15, and 30 minutes and at 2 experimental volumes, 500 mu L and 1 mL. The samples were stained by using acridine orange dye before and after the experiments and evaluated by using a confocal microscope. The percentage of biofilm, isolated cells, and noncolonized dentin was measured by using a grid system. Differences in the reduction or increase of the studied parameters were assessed by using nonparametric methods (P < .05). Results: The higher values of biofilm dissolution and noncolonized dentin were found in the 30-minute NaOCl group and in the 5-minute and 15-minute groups of 5.25% NaOCL. The use of 2% chlorhexidine solution did not improve the biofilm dissolution or increase the cleaning of the dentin in comparison with the NaOCl solutions (P < .05). Conclusions: Two percent chlorhexidine does not dissolve the biofilms. Thirty minutes of NaOCl are necessary to have higher values of biofilm dissolution and to increase the cleaning of the dentin independently of the concentration in comparison with the 5-minute and 15-minute contact times. (J Endod 2011;37:1134-1138)
Resumo:
Background: The aim of this study was to evaluate the preventive effect in vitro of experimental gel containing iron and/or fluoride on the erosion of bovine enamel. Methods: To standardize the blocks (n = 80), specimens (4 x 4 mm) were previously selected to measure the initial microhardness. The blocks were randomly allocated into four groups of 20 samples each: C (control, placebo gel); F (fluoride gel, 1.23% NaF); Fe (iron gel, 10 mmol/L FeSO(4)) and F + Fe (fluoride + iron gel). The gels were applied and removed after 1 minute. The blocks were then submitted to six alternating remineralization and demineralization cycles. The beverage Coca-Cola (R) (10 minutes, 30 mL) was used for demineralization, and artificial saliva (1 hour) for remineralization. The effect of erosion was measured by wear analysis (profilometry). Data were analysed by ANOVA and the Tukey test for individual comparisons (p <0.05). Results: The mean wear (+/- SD, mu m) was C: 0.94 +/- 0.22; F: 0.55 +/- 0.12; Fe: 0.49 +/- 0.11 and F + Fe: 0.55 +/- 0.13. When the experimental gels were used, there was statistically significant reduction in enamel wear in comparison with the control (p <0.001). However, the experimental gels did not differ significantly among them. Conclusions: The gels containing iron with or without fluoride are capable of interfering with the dissolution dental enamel in the presence of erosive challenge.
Resumo:
Objective: The aim of this study was to evaluate, in vitro, the effect of an experimental varnish containing iron on the dissolution of bovine enamel by carbonated beverage. Methods: Eighty specimens were randomly allocated to four groups (n = 20 per group), according to the following treatments: Fe varnish (FeV, 10 mmoL/L Fe), F varnish (FV, 2.71% F), placebo varnish (PV) and control (not treated, NT). The varnishes were applied in a thin layer and removed after 6 h. Then, the samples were submitted to six cycles, alternating re- and demineralisation (only 1 day). Demineralisation was performed with the beverage Coca-Cola (R) (10 min, 30 mL/block) and remineralisation with artificial saliva for I h. In order to determine the amount of enamel dissolved, the wear was analysed by profilometry. Data were analysed by ANOVA and Tukey`s test (p < 0.05). Results: The mean wear (+/- S.E.) was significantly lesser for the FeV (0.451 +/- 0.018 mu m) when compared to the other treatments. The FV caused significantly less wear (0.554 +/- 0.022 mu m) when compared to PV (0.991 +/- 0.039 mu m) and NT (1.014 +/- 0.033), which did not significantly differ from each other. Conclusions: The results suggest that the iron varnish can interfere with the dissolution of dental enamel in the presence of acidic beverages. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Objective: This in situ/ex vivo study assessed the erosive potential of a light cola drink when compared to a regular one. Methods: During 2 experimental 14-days crossover phases, eight volunteers wore palatal devices with 2 human enamel blocks. The groups under study were: group light, erosive challenge with light cola drink and group regular, erosive challenge with regular cola drink. During 14 days, erosive challenges were performed extraorally 3X/day. In each challenge, the device was immersed in 150 ml of light cola (group light) or regular cola (group regular) for 5 min. Erosion was analysed by surface profilometry (mu m) and surface microhardness change (%SMH). The data were statistically analyzed using paired t test (p<0.05). Results: Group light (0.6 +/- 0.2 mu m) showed significantly lesser wear than group regular (3.1 +/- 1.0 mu m). There was no significant difference between the groups for the %SMH (group light -63.9 +/- 13.9 and group regular -78.5 +/- 12.7). Conclusions: The data suggest that the light cola drink is less erosive than the regular one. (C) 2008 Elsevier Ltd. All rights reserved.