333 resultados para Cytokine production


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Periodontal diseases are infectious diseases, in which periodontopathogens trigger chronic inflammatory and immune responses that lead to tissue destruction. It occurs through the generation of metalloproteinases and the activation of bone resorption mechanisms. Anti-inflammatory cytokines such as IL-10 seem to attenuate periodontal tissue destruction through the induction of tissue inhibitors of metalloproteinases (TIMPs) and the inhibitor of osteoclastogenesis osteoprotegerin (OPG). A high individual variation in levels of IL-10 mRNA is verified in periodontitis patients, which is possibly determined by genetic polymorphisms. In this study, the IL-10 promoter -592C/A single nucleotide polymorphism ( SNP), which is associated with a decrease in IL-10 production, was analyzed by RFLP in 116 chronic periodontitis (CP) patients and 173 control (C) subjects, and the IL-10, TIMPs, and OPG mRNA expression levels in diseased gingival tissues were determined by real-time-PCR. The IL-10-592 SNP CA (P=0.0012/OR=2.4/CI:1.4-4.1), AA (P=0.0458/OR=2.3/CI:1.1-4.9), and CA+AA (P=0.0006/OR=2.4/CI: 1.4-3.4) genotypes and the allele A (P=0.0036/OR=1.7/CI:1.2-2.4) were found to be significantly more prevalent in the CP group when compared with control subjects. Both CA and AA genotypes were associated with lower levels of IL-10, TIMP-3, and OPG mRNA expression in diseased periodontal tissues and were also associated with disease severity as mean pocket depth. Taken together, the results presented here demonstrate that IL10-592 SNP is functional in CP, being associated with lower levels of IL-10 mRNA expression, which is supposed to consequently decrease the expression of the downstream genes TIMP-3 and OPG, and influence periodontal disease outcome. J. Leukoc. Biol. 84: 1565-1573; 2008.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Inflammatory cytokines contribute to periapical tissue destruction. Their activity is potentially regulated by suppressors of cytokine signaling (SOCS), which down-regulate signal transduction as part of an inhibitory feedback loop. We investigated the expression of the cytokines tumor necrosis factor alpha (TNF-alpha); interleukin (IL)-10 and RANKL; and SOCS-1, -2, and -3 by real-time polymerase chain reaction in 57 periapical granulomas and 38 healthy periapical tissues. Periapical granulomas exhibited significantly higher SOCS-1, -2, and -3, TNF-alpha, IL-10, and RANKL messenger RNA levels when compared with healthy controls. Significant positive correlations were found between SOCS1 and IL-10 and between SOCS3 and IL-10. Significant inverse correlations were observed between SOCS1 and TNF-alpha, SOCS1 and RANKL, and SOCS3 and TNF-alpha. Increased SOCS-1, -2, and -3 messenger RNA levels in periapical granulomas may be related to the downregulation of inflammatory cytokines in these lesions; therefore, SOCS molecules may play a role in the dynamics of periapical granulomas development. (J Endod 2008;34:1480-1484)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction: Fibroblasts are the most abundant cells in dental pulp. To investigate their capacity to produce the chemokines CCL3, CXCL8, and CXCL12 as well as nitric oxide (NO), we evaluated the production of these mediators in supernatants of cultured human dental pulp fibroblasts (HDPF) stimulated by heat-killed Enterococcus faecalis (HKEF). Methods: Primary cultures of HDPF were stimulated with medium alone or HKEF (1:1, 10:1, or 100:1 bacteria:fibroblast) for 1, 6, and 24 hours. Chemokines and NO were assessed through enzyme-linked immunosorbent assay and Griess reaction, respectively. Statistical analysis was performed by using analysis of variance and Tukey post test. Results: CCL3 was not detected, whereas constitutive CXCL8 was not affected. Production of CXCL12 was increased at 1 and 6 hours, and NO was increased at the concentration of 1:1 bacteria:fibroblast at 24 hours. Viability and proliferation assays did not reveal cell number differences. Conclusions: These findings demonstrate that heat-killed E. faecalis is able to increase production of CXCL12 and NO by HDPF. (J Endod 2010;36:91-94)