333 resultados para Hazard duration analysis
Resumo:
This paper proposes a regression model considering the modified Weibull distribution. This distribution can be used to model bathtub-shaped failure rate functions. Assuming censored data, we consider maximum likelihood and Jackknife estimators for the parameters of the model. We derive the appropriate matrices for assessing local influence on the parameter estimates under different perturbation schemes and we also present some ways to perform global influence. Besides, for different parameter settings, sample sizes and censoring percentages, various simulations are performed and the empirical distribution of the modified deviance residual is displayed and compared with the standard normal distribution. These studies suggest that the residual analysis usually performed in normal linear regression models can be straightforwardly extended for a martingale-type residual in log-modified Weibull regression models with censored data. Finally, we analyze a real data set under log-modified Weibull regression models. A diagnostic analysis and a model checking based on the modified deviance residual are performed to select appropriate models. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
In this study, regression models are evaluated for grouped survival data when the effect of censoring time is considered in the model and the regression structure is modeled through four link functions. The methodology for grouped survival data is based on life tables, and the times are grouped in k intervals so that ties are eliminated. Thus, the data modeling is performed by considering the discrete models of lifetime regression. The model parameters are estimated by using the maximum likelihood and jackknife methods. To detect influential observations in the proposed models, diagnostic measures based on case deletion, which are denominated global influence, and influence measures based on small perturbations in the data or in the model, referred to as local influence, are used. In addition to those measures, the local influence and the total influential estimate are also employed. Various simulation studies are performed and compared to the performance of the four link functions of the regression models for grouped survival data for different parameter settings, sample sizes and numbers of intervals. Finally, a data set is analyzed by using the proposed regression models. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
A four-parameter extension of the generalized gamma distribution capable of modelling a bathtub-shaped hazard rate function is defined and studied. The beauty and importance of this distribution lies in its ability to model monotone and non-monotone failure rate functions, which are quite common in lifetime data analysis and reliability. The new distribution has a number of well-known lifetime special sub-models, such as the exponentiated Weibull, exponentiated generalized half-normal, exponentiated gamma and generalized Rayleigh, among others. We derive two infinite sum representations for its moments. We calculate the density of the order statistics and two expansions for their moments. The method of maximum likelihood is used for estimating the model parameters and the observed information matrix is obtained. Finally, a real data set from the medical area is analysed.
Resumo:
Torrefaction is a mild pyrolysis process (usually up to 300 degrees C) that changes the chemical and physical properties of biomass. This process is a possible pre-treatment prior to further processes (transport, grinding, combustion, gasification, etc) to generate energy or biofuels. In this study, three eucalyptus wood species and bark were subjected to different torrefaction conditions to determine the alterations in their structural and energy properties. The most severe treatment (280 degrees C, 5 h) causes mass losses of more than 35%, with severe damage to anatomical structure, and an increase of about 27% in the specific energy content. Bark is more sensitive to heat than wood. Energy yields are always higher than mass yields, thereby demonstrating the benefits of torrefaction in concentrating biomass energy. The overall mass loss is proposed as a relevant parameter to synthesize the effect of torrefaction conditions (temperature and duration). Accordingly, all results are summarised by analytical expressions able to predict the energy properties as a function of the overall mass loss. These expressions are intended to be used in any optimization procedure, from production in the field to the final use. (c) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Leaf wetness duration (LWD) models based on empirical approaches offer practical advantages over physically based models in agricultural applications, but their spatial portability is questionable because they may be biased to the climatic conditions under which they were developed. In our study, spatial portability of three LWD models with empirical characteristics - a RH threshold model, a decision tree model with wind speed correction, and a fuzzy logic model - was evaluated using weather data collected in Brazil, Canada, Costa Rica, Italy and the USA. The fuzzy logic model was more accurate than the other models in estimating LWD measured by painted leaf wetness sensors. The fraction of correct estimates for the fuzzy logic model was greater (0.87) than for the other models (0.85-0.86) across 28 sites where painted sensors were installed, and the degree of agreement k statistic between the model and painted sensors was greater for the fuzzy logic model (0.71) than that for the other models (0.64-0.66). Values of the k statistic for the fuzzy logic model were also less variable across sites than those of the other models. When model estimates were compared with measurements from unpainted leaf wetness sensors, the fuzzy logic model had less mean absolute error (2.5 h day(-1)) than other models (2.6-2.7 h day(-1)) after the model was calibrated for the unpainted sensors. The results suggest that the fuzzy logic model has greater spatial portability than the other models evaluated and merits further validation in comparison with physical models under a wider range of climate conditions. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Leaf wetness duration (LWD) is a key parameter in agricultural meteorology since it is related to epidemiology of many important crops, controlling pathogen infection and development rates. Because LWD is not widely measured, several methods have been developed to estimate it from weather data. Among the models used to estimate LWD, those that use physical principles of dew formation and dew and/or rain evaporation have shown good portability and sufficiently accurate results, but their complexity is a disadvantage for operational use. Alternatively, empirical models have been used despite their limitations. The simplest empirical models use only relative humidity data. The objective of this study was to evaluate the performance of three RH-based empirical models to estimate LWD in four regions around the world that have different climate conditions. Hourly LWD, air temperature, and relative humidity data were obtained from Ames, IA (USA), Elora, Ontario (Canada), Florence, Toscany (Italy), and Piracicaba, Sao Paulo State (Brazil). These data were used to evaluate the performance of the following empirical LWD estimation models: constant RH threshold (RH >= 90%); dew point depression (DPD); and extended RH threshold (EXT_RH). Different performance of the models was observed in the four locations. In Ames, Elora and Piracicaba, the RH >= 90% and DPD models underestimated LWD, whereas in Florence these methods overestimated LWD, especially for shorter wet periods. When the EXT_RH model was used, LWD was overestimated for all locations, with a significant increase in the errors. In general, the RH >= 90% model performed best, presenting the highest general fraction of correct estimates (F(C)), between 0.87 and 0.92, and the lowest false alarm ratio (F(AR)), between 0.02 and 0.31. The use of specific thresholds for each location improved accuracy of the RH model substantially, even when independent data were used; MAE ranged from 1.23 to 1.89 h, which is very similar to errors obtained with published physical models for LWD estimation. Based on these results, we concluded that, if calibrated locally, LWD can be estimated with acceptable accuracy by RH above a specific threshold, and that the EXT_RH method was unsuitable for estimating LWD at the locations used in this study. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Leaf wetness duration (LWD) is related to plant disease occurrence and is therefore a key parameter in agrometeorology. As LWD is seldom measured at standard weather stations, it must be estimated in order to ensure the effectiveness of warning systems and the scheduling of chemical disease control. Among the models used to estimate LWD, those that use physical principles of dew formation and dew and/or rain evaporation have shown good portability and sufficiently accurate results for operational use. However, the requirement of net radiation (Rn) is a disadvantage foroperational physical models, since this variable is usually not measured over crops or even at standard weather stations. With the objective of proposing a solution for this problem, this study has evaluated the ability of four models to estimate hourly Rn and their impact on LWD estimates using a Penman-Monteith approach. A field experiment was carried out in Elora, Ontario, Canada, with measurements of LWD, Rn and other meteorological variables over mowed turfgrass for a 58 day period during the growing season of 2003. Four models for estimating hourly Rn based on different combinations of incoming solar radiation (Rg), airtemperature (T), relative humidity (RH), cloud cover (CC) and cloud height (CH), were evaluated. Measured and estimated hourly Rn values were applied in a Penman-Monteith model to estimate LWD. Correlating measured and estimated Rn, we observed that all models performed well in terms of estimating hourly Rn. However, when cloud data were used the models overestimated positive Rn and underestimated negative Rn. When only Rg and T were used to estimate hourly Rn, the model underestimated positive Rn and no tendency was observed for negative Rn. The best performance was obtained with Model I, which presented, in general, the smallest mean absolute error (MAE) and the highest C-index. When measured LWD was compared to the Penman-Monteith LWD, calculated with measured and estimated Rn, few differences were observed. Both precision and accuracy were high, with the slopes of the relationships ranging from 0.96 to 1.02 and R-2 from 0.85 to 0.92, resulting in C-indices between 0.87 and 0.93. The LWD mean absolute errors associated with Rn estimates were between 1.0 and 1.5h, which is sufficient for use in plant disease management schemes.
Resumo:
Yellow leaf syndrome was a serious problem in the beginning of the 1990s in Brazil, when yield losses were estimated to be around 50%. The disease is currently endemic, but it is considered potentially important. Previous studies have revealed only the presence of a luteovirus associated with the disease in Brazil. We report that a phytoplasma of 16SrI-B is also associated with this disease. This is the first demonstration of the presence of a group 16SrI-B phytoplasma in association with sugarcane yellow leaf in Brazil.
Resumo:
This study examined the effects of temperature and wetness duration in vitro and in vivo as well as the effects of fruit age on germination and appressoria formation by conidia of Guignardia psidii, the causal agent of black spot disease in guava fruit. The temperatures tested for in vitro and in vivo experiments were 10, 15, 20, 25, 30, 35 and 40 degrees C. The wetness periods studied were 6, 12, 24, 36 and 48 h in vitro and 6, 12 and 24 h in vivo. Fruit 10, 35, 60, 85 and 110-days old were inoculated and maintained at 25 degrees C, with a wetness period of 24 h. Temperature and wetness duration affected the variables evaluated in vitro and in vivo. All variables reached their maximum values at between 25 and 30 degrees C with a wetness duration of 24 h in vivo and 48 h in vitro. These conditions resulted in 31.3% conidia germination, 33.6% appressoria formation and 32.5% appressoria melanization in vitro, and 50.4% conidia germination and 9.5% appressoria formation in vivo. Fruit age also influenced these factors. As fruit age increased, conidia germination and appressoria formation gradually increased. Conidia germination and appressoria formation were 10.8% and 2.3%, respectively, in 10-day-old fruits. In 110-day-old fruits, conidia germination and appressoria formation were 42.5% and 23.2% respectively.
Resumo:
Sugarcane yield and quality are affected by a number of biotic and abiotic stresses. In response to such stresses, plants may increase the activities of some enzymes such as glutathione transferase (GST), which are involved in the detoxification of xenobiotics. Thus, a sugarcane GST was modelled and molecular docked using the program LIGIN to investigate the contributions of the active site residues towards the binding of reduced glutathione (GSH) and 1-chloro-2,4-dinitrobenzene (CDNB). As a result, W13 and I119 were identified as key residues for the specificity of sugarcane GSTF1 (SoGSTF1) towards CDNB. To obtain a better understanding of the catalytic specificity of sugarcane GST (SoGSTF1), two mutants were designed, W13L and I119F. Tertiary structure models and the same docking procedure were performed to explain the interactions between sugarcane GSTs with GSH and CDNB. An electron-sharing network for GSH interaction was also proposed. The SoGSTF1 and the mutated gene constructions were cloned and expressed in Escherichia coli and the expressed protein purified. Kinetic analyses revealed different Km values not only for CDNB, but also for GSH. The Km values were 0.2, 1.3 and 0.3 mM for GSH, and 0.9, 1.2 and 0.5 mM for CDNB, for the wild type, W13L mutant and I119F mutant, respectively. The V(max) values were 297.6, 224.5 and 171.8 mu mol min(-1) mg(-1) protein for GSH, and 372.3, 170.6 and 160.4 mu mol min(-1) mg(-1) protein for CDNB.
Resumo:
Expressed sequence tags derived markers have a great potential to be used in functional map construction and QTL tagging. In the present work, sugarcane genomic probes and expressed sequence tags having homology to genes, mostly involved in carbohydrate metabolism were used in RFLP assays to identify putative QTLs as well as their epistatic interactions for fiber content, cane yield, pol and tones of sugar per hectare, at two crop cycles in a progeny derived from a bi-parental cross of sugarcane elite materials. A hundred and twenty marker trait associations were found, of which 26 at both crop cycle and 32 only at first ratoon cane. A sucrose synthase derived marker was associated with a putative QTL having a high negative effect on cane yield and also with a QTL having a positive effect on Pol at both crop cycles. Fifty digenic epistatic marker interactions were identified for the four traits evaluated. Of these, only two were observed at both crop cycles.
Resumo:
A comparative study between microsatellite and allozyme markers was conducted on the genetic structure and mating system in natural populations of Euterpe edulis Mart. Three cohorts, including seedlings, saplings, and adults, were examined in 4 populations using 10 allozyme loci and 10 microsatellite loci. As expected, microsatellite markers had a much higher degree of polymorphism than allozymes, but estimates of multilocus outcrossing rate ((t) over cap (m) = 1.00), as well as estimates of genetic structure (F(IS), G(ST)), were similar for the 2 sets of markers. Estimates of R(ST), for microsatellites, were higher than those of GST, but results of both statistics revealed a close agreement for the genetic structure of the species. This study provides support for the important conclusion that allozymes are still useful and reliable markers to estimate population genetic parameters. Effects of sample size on estimates from hypervariable loci are also discussed in this paper.
Resumo:
Several aspects of photoperception and light signal transduction have been elucidated by studies with model plants. However, the information available for economically important crops, such as Fabaceae species, is scarce. In order to incorporate the existing genomic tools into a strategy to advance soybean research, we have investigated publicly available expressed sequence tag ( EST) sequence databases in order to identify Glycine max sequences related to genes involved in light-regulated developmental control in model plants. Approximately 38,000 sequences from open-access databases were investigated, and all bona fide and putative photoreceptor gene families were found in soybean sequence databases. We have identified G. max orthologs for several families of transcriptional regulators and cytoplasmic proteins mediating photoreceptor-induced responses, although some important Arabidopsis phytochrome-signaling components are absent. Moreover, soybean and Arabidopsis gene-family homologs appear to have undergone a distinct expansion process in some cases. We propose a working model of light perception, signal transduction and response-eliciting in G. max, based on the identified key components from Arabidopsis. These results demonstrate the power of comparative genomics between model systems and crop species to elucidate several aspects of plant physiology and metabolism.
Resumo:
The mechanisms involved in the control of growth in chickens are too complex to be explained only under univariate analysis because all related traits are biologically correlated. Therefore, we evaluated broiler chicken performance under a multivariate approach, using the canonical discriminant analysis. A total of 1920 chicks from eight treatments, defined as the combination of four broiler chicken strains (Arbor Acres, AgRoss 308, Cobb 500 and RX) from both sexes, were housed in 48 pens. Average feed intake, average live weight, feed conversion and carcass, breast and leg weights were obtained for days 1 to 42. Canonical discriminant analysis was implemented by SAS((R)) CANDISC procedure and differences between treatments were obtained by the F-test (P < 0.05) over the squared Mahalanobis` distances. Multivariate performance from all treatments could be easily visualised because one graph was obtained from two first canonical variables, which explained 96.49% of total variation, using a SAS((R)) CONELIP macro. A clear distinction between sexes was found, where males were better than females. Also between strains, Arbor Acres, AgRoss 308 and Cobb 500 (commercial) were better than RX (experimental), Evaluation of broiler chicken performance was facilitated by the fact that the six original traits were reduced to only two canonical variables. Average live weight and carcass weight (first canonical variable) were the most important traits to discriminate treatments. The contrast between average feed intake and average live weight plus feed conversion (second canonical variable) were used to classify them. We suggest analysing performance data sets using canonical discriminant analysis.
Resumo:
The genetic linkage map for the common bean (Phaseolus vulgaris L.) is a valuable tool for breeding programs. Breeders provide new cultivars that meet the requirements of farmers and consumers, such as seed color, seed size, maturity, and growth habit. A genetic study was conducted to examine the genetics behind certain qualitative traits. Growth habit is usually described as a recessive trait inherited by a single gene, and there is no consensus about the position of the locus. The aim of this study was to develop a new genetic linkage map using genic and genomic microsatellite markers and three morphological traits: growth habit, flower color, and pod tip shape. A mapping population consisting of 380 recombinant F10 lines was generated from IAC-UNA x CAL143. A total of 871 microsatellites were screened for polymorphisms among the parents, and a linkage map was obtained with 198 mapped microsatellites. The total map length was 1865.9 cM, and the average distance between markers was 9.4 cM. Flower color and pod tip shape were mapped and segregated at Mendelian ratios, as expected. The segregation ratio and linkage data analyses indicated that the determinacy growth habit was inherited as two independent and dominant genes, and a genetic model is proposed for this trait.