332 resultados para TWIST, taxol, Akt, cancer, resistance
Resumo:
Association between insulin resistance (IR) and non-alcoholic fatty liver disease (NAFLD) has been reported. This prompted us to evaluate the power of the insulin sensitivity index (ISI) in association with IGFBP-1 to identify IR early in obese children/adolescents. OGTT was performed in 34 obese/overweight children/adolescents. Glucose, insulin and IGFBP-1 were measured in serum samples and ISI was calculated. Considering the presence of three or more risk factors for IR as a criterion for IR, ISI <4.6 showed 87.5% sensitivity and 94.5% specificity in diagnosing IR. IGFBP-1 was lower in the group with ISI <4.6 (p <0.01). In this group, three patients had higher than expected IGFBP-1, suggesting hepatic IR, while three patients with ISI >4.6 showed very low IGFBP-1 levels. Conclusion: ISI <4.6 is a good indicator of early peripheral IR and, associated with IGFBP-1, can identify increased risk of hepatic IR. Low IGFBP-1 levels among non-IR children may indicate increased portal insulin levels.
Resumo:
An effective innate immune recognition of the intracellular protozoan parasite Trypanosoma cruzi is critical for host resistance against Chagas disease, a severe and chronic illness that affects millions of people in Latin America. In this study, we evaluated the participation of nucleotide-binding oligomerization domain (Nod)like receptor proteins in host response to T cruzi infection and found that Nod1-dependent, but not Nod2-dependent, responses are required for host resistance against infection. Bone marrow-derived macrophages from Nod1(-/-) mice showed an impaired induction of NF-kappa B-dependent products in response to infection and failed to restrict T cruzi infection in presence of IFN-gamma. Despite normal cytokine production in the sera, Nod1(-/-) mice were highly susceptible to T cruzi infection, in a similar manner to MyD88(-/-) and NO synthase 2(-/-) mice. These studies indicate that Nod1-dependent responses account for host resistance against T cruzi infection by mechanisms independent of cytokine production. The Journal of Immunology, 2010, 184: 1148-1152.
Resumo:
Glioma is the most frequent and malignant primary human brain tumor with dismal prognosis despite multimodal therapy. Resveratrol and quercetin, two structurally related and naturally occurring polyphenols, are proposed to have anticancer effects. We report here that resveratrol and quercetin decreased the cell number in four glioma cell lines but not in rat astrocytes. Low doses of resveratrol (10 mu M) or quercetin (25 mu M) separately had no effect on apoptosis induction, but had a strong effect on caspase 3/7 activation when administered together. Western blot analyses showed that resveratrol (10 mu M) and quercetin (25 mu M) caused a reduction in phosphorylation of Akt, but this reduction was not sufficient by itself to mediate the effects of these polyphenols. Most important, resveratrol and quercetin chronically administered presented a strong synergism in inducing senescence-like growth arrest. These results suggest that the combination of polyphenols can potentialize their antitumoral activity, thereby reducing the therapeutic concentration needed for glioma treatment. (Cancer Sci 2009; 100: 1655-1662).
Resumo:
Urinary bladder cancer is the fourth most common malignancy in the Western world. Transitional cell carcinoma (TCC) is the most common subtype, accounting for about 90% of all bladder cancers. The TP53 gene plays an essential role in the regulation of the cell cycle and apoptosis and therefore contributes to cellular transformation and malignancy; however, little is known about the differential gene expression patterns in human tumors that present with the wild-type or mutated TP53 gene. Therefore, because gene profiling can provide new insights into the molecular biology of bladder cancer, the present study aimed to compare the molecular profiles of bladder cancer cell lines with different TP53 alleles, including the wild type (RT4) and two mutants (5637, with mutations in codons 280 and 72; and T24, a TP53 allele encoding an in-frame deletion of tyrosine 126). Unsupervised hierarchical clustering and gene networks were constructed based on data generated by cDNA microarrays using mRNA from the three cell lines. Differentially expressed genes related to the cell cycle, cell division, cell death, and cell proliferation were observed in the three cell lines. However, the cDNA microarray data did not cluster cell lines based on their TP53 allele. The gene profiles of the RT4 cells were more similar to those of T24 than to those of the 5637 cells. While the deregulation of both the cell cycle and the apoptotic pathways was particularly related to TCC, these alterations were not associated with the TP53 status.
Resumo:
We have compared the effects of two types of physical training on the cardiac autonomic control in ovariectomized and sham-operated rats according to different approaches: double autonomic blockade (DAB) with methylatropine and propranolol; baroreflex sensibility (BRS) and spectral analysis of heart rate variability (HRV). Wistar female rats (+/- 250 g) were divided into two groups: sham-operated and ovariectomized. Each group was subdivided into three subgroups: sedentary rats, rats submitted to aerobic trained and rats submitted to resistance training. Ovariectomy did not change arterial pressure, basal heart rate (HR), DAB and BRS responses, but interfered with HRV by reducing the low-frequency oscillations (LF = 0.20-0.75 Hz) in relation to sedentary sham-operated rats. The DAB showed that both types of training promoted an increase in the predominance of vagal tonus in sham-operated rats, but HR variations due to methylatropine were decreased in the resistance trained rats compared to sedentary rats. Evaluation of BRS showed that resistance training for sham-operated and ovariectomized rats reduced the tachycardic responses in relation to aerobic training. Evaluation of HRV in trained rats showed that aerobic training reduced LF oscillations in sham-operated rats, whereas resistance training had a contrary effect. In the ovariectomized rats, aerobic training increased high frequency oscillations (HF = 0.75-2.5 Hz), whereas resistance training produced no effect. In sham-operated rats, both types of training increased the vagal autonomic tonus, but resistance training reduced HF oscillations and BRS as well. In turn, both types of training had similar results in ovariectomized rats, except for HRV, as aerobic training promoted an increase in HF oscillations. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Purpose: Eicosapentaenoic acid has been tested in bladder cancer as a synergistic cytotoxic agent in the form of meglumine-eicosapentaenoic acid, although its mechanism of action is poorly understood in this cancer. The current study analyzed the mechanisms by which eicosapentaenoic acid alters T24/83 human bladder cancer metabolism in vitro. Materials and Methods: T24/83 human bladder cancer cells were exposed to eicosapentaenoic acid for 6 to 24 hours in vitro and incorporation profiles were determined. Effects on membrane phospholipid incorporation, energy metabolism, mitochondrial activity, cell proliferation and apoptosis were analyzed Reactive oxygen species and lipid peroxide production were also determined. Results: Eicosapentaenoic acid was readily incorporated into membrane phospholipids with a considerable amount present in mitochondrial cardiolipin. Energy metabolism was significantly altered by eicosapentaenoic acid, accompanied by decreased mitochondrial membrane potential, and increased lipid peroxide and reactive oxygen species generation. Subsequently caspase-3 activation and apoptosis were detected in eicosapentaenoic acid exposed cells, leading to decreased cell numbers. Conclusions: These findings confirm that eicosapentaenoic acid is a potent cytotoxic agent in bladder cancer cells and provide important insight into the mechanisms by which eicosapentaenoic acid causes these changes. The changes in membrane composition that can occur with eicosapentaenoic acid likely contribute to the enhanced drug cytotoxicity reported previously in meglumine-eicosapentaenoic acid/epirubicin/mitomycin studies. Dietary manipulation of the cardiolipin fatty acid composition may provide an additional method for stimulating cell death in bladder cancer. In vivo studies using intravesical and dietary manipulation of fatty acid metabolism in bladder cancer merit further attention.
Resumo:
Resistance to drug is a major cause of treatment failure in pediatric brain cancer. The multidrug resistance (MDR) phenotype can be mediated by the superfamily of adenosine triphosphate-binding cassette (ABC) transporters. The dynamics of expression of the MDR genes after exposure to chemotherapy, especially the comparison between pediatric brain tumors of different histology, is poorly described. To compare the expression profiles of the multidrug resistance genes ABCB1, ABCC1, and ABCG2 in different neuroepithelial pediatric brain tumor cell lines prior and following short-term culture with vinblastine. Immortalized lineages from pilocytic astrocytoma (R286), anaplasic astrocytoma (UW467), glioblastoma (SF188), and medulloblastoma (UW3) were exposed to vinblastine sulphate at different schedules (10 and 60 nM for 24 and 72 h). Relative amounts of mRNA expression were analyzed by real-time quantitative polymerase chain reaction. Protein expression was assessed by immunohistochemistry for ABCB1, ABCC1, and ABCG2. mRNA expression of ABCB1 increased together with augmenting concentration and time of exposure to vinblastine for R286, UW467, and UW3 cell lines. Interestingly, ABCB1 levels of expression diminished in SF188. Following chemotherapy, mRNA expression of ABCC1 decreased in all cell lines other than glioblastoma. ABCG2 expression was influenced by vinblastine only for UW3. The mRNA levels showed consistent association to protein expression in the selected sets of cell lines analyzed. The pediatric glioblastoma cell line SF188 shows different pattern of expression of multidrug resistance genes when exposed to vinblastine. These preliminary findings may be useful in determining novel strategies of treatment for neuroepithelial pediatric brain tumors.
Resumo:
Different genes might be involved in Colletotrichum lindemuthianum resistance in leaves and stem of common bean. This work aimed to study the genetic mechanisms of the resistance in the leaf and stem in segregating populations from backcrosses involving resistant cultivar AN 910408 and susceptible cultivar Ruda inoculated with spore suspensions of C. lindemuthianum race 83. Our results indicate that two genes which interact epistatically, one dominant and one recessive, are involved in the genetic control of leaf anthracnose resistance. As for stem anthracnose resistance, two genes also epistatic, one dominant and one recessive, explain the resistance to C. lindemuthianum race 83. The recessive gene is the same for leaf and stem resistance; however, the dominant genes are distinct and independent from each other. The three independent resistance genes of AN 910408 observed in this work could be derived from Guanajuato 31.
Resumo:
Background: Obestatin is a recently identified ghrelin gene product that was reported to inhibit appetite and gastric motility in contrast to ghrelin. We investigated fasting obestatin and ghrelin levels in patients with obesity and anorexia nervosa. Methods: Fasting plasma obestatin, acyl-ghrelin, desacyl-ghrelin, leptin, glucose serum adiponectin, and insulin were measured in 10 obese subjects, 11 restricting-type anorexics, and 11 control subjects. Results: Obese group had significantly lower levels of obestatin (p < .01), while anorexic group had significantly higher levels (p < .01). Obestatin was negatively correlated with body mass index (BMI) (r = -.74), glucose (r = -.56), insulin (r = -.55), leptin (r = -.66), and also with the homeostasis model assessment of insulin resistance (HOMA-R) (r = -.49) and was positively correlated with acyl-ghrelin (r = .65) and desacyl-ghrelin (r = .60). No correlation was seen between obestatin and adiponectin, but the latter was negatively correlated with both acyl-ghrelin and desacyl-ghrelin. Desacyl-ghrelin to acyl-ghrelin ratio was significantly different between anorexic and control groups (p < .05), while no difference was seen between obese and control groups. Conclusions: Both obestatin and ghrelin are increased in anorexic and decreased in obesity. We suggest that obestatin is a nutritional marker reflecting body adiposity and insulin resistance.
Resumo:
To identify novel genes involved in the molecular pathogenesis of chronic lymphocytic leukemia (CLL) we performed a serial analysis of gene expression (SAGE) in CLL cells, and compared this with healthy B cells (nCD19(+)). We found a high level of similarity among CLL subtypes, but a comparison of CLL versus nCD19(+) libraries revealed 55 genes that were over-represented and 49 genes that were down-regulated in CLL. A gene ontology analysis revealed that TOSO, which plays a functional role upstream of Fas extrinsic apoptosis pathway, was over-expressed in CLL cells. This finding was confirmed by real-time reverse transcription-polymerase chain reaction in 78 CLL and 12 nCD19(+) cases (P <.001). We validated expression using flow cytometry and tissue microarray and demonstrated a 5.6-fold increase of TOSO protein in circulating CLL cells (P =.013) and lymph nodes (P =.006). Our SAGE results have demonstrated that TOSO is a novel overexpressed antiapoptotic gene in CLL.
Resumo:
This study examines in vitro steroid sensitivity in chronic renal failure ( CRF) patients and its influence on the allograft outcome. We determined the inhibitory effect of dexamethasone ( DEX) on concanavalin A ( Con-A)-stimulated peripheral blood mononuclear cell ( PBMC) proliferation, and glucocorticoid receptor` ( GR) number of binding sites ( B-max) and affinity ( K-d) in 28 CRF patients and 40 normal healthy controls. Based on K-d values > 95th percentile from controls, patients were divided into two groups: glucocorticoid resistant ( n = 11) and glucocorticoid sensitive ( n = 17). Patients were followed during 18 months post-transplantation observing acute rejection episodes ( ARE), chronic allograft nephropathy ( CAN), allograft failure and death. The DEX concentration that caused 50% inhibition of Con-A-stimulated PBMC proliferation ( IC50) was higher in CRF than in healthy controls ( 2.2 x 10(-5) +/- 1.0 x 10(-5) versus 8.3 x 10(-6) +/- 4.2 x 10(-6) mol/ L, P = 0.02). Values of Kd ( 12.4 +/- 1.8 versus 7.2 +/- 0.9 nM) and Bmax ( 7.7 +/- 1.1 versus 4.1 +/- 0.3 fmol/ mg protein) were higher in CRF patients ( P = 0.02 and P = 0.001, respectively). There were higher incidences of ARE ( P = 0.02) and CAN ( P = 0.002) in the glucocorticoid-resistant group. Univariate and multivariate logistic regression showed that Kd was an independent predictor of ARE ( OR 8.8, P= 0.03) aswell as of CAN ( OR 16.5, P= 0.01). In conclusion, we observed glucocorticoid resistance in a subgroup of CRF patients undergoing dialysis, which led to a higher morbidity due to ARE and CAN in an 18-month follow-up period.
Resumo:
Background: The presence of cancer stem cell (CSC) antigens can be evidenced in some human tumors by phenotypic analysis through immunostaining. This study aims to identify a putative CSC immunophenotype in oral squamous cell carcinoma (OSCC) and determine its influence on prognosis. Methods: The following data were retrieved from 157 patents: age, gender, primary anatomic site, smoking and alcohol intake, recurrence, metastases, histologic classification, treatment, disease-free survival (DFS), and overall survival (OS). An immunohistochemical study for CD44 and CD24 was performed in a tissue microarray of 157 paraffin blocks of OSCCs. Results: In univariate analysis, the immunostaining pattern showed significant influences in relation to OS for alcohol intake and treatment, as well as for the CD44+ and CD44-/CD24- immunophenotypes. The multivariate test confirmed these associations. Conclusions: Based on our results, the CD44 immunostaining and the absence of immunoexpression of these two investigated markers can be used in combination with other clinicopathologic information to improve the assessment of prognosis in OSCC.
Resumo:
Background: Acute kidney injury (AKI) is a frequent complication in hospitalized patients, especially in those in intensive care units (ICU). The RIFLE classification might be a valid prognostic factor for critically ill cancer patients. The present study aims to evaluate the discriminatory capacity of RIFLE versus other general prognostic scores in predicting hospital mortality in critically ill cancer patients. Methods: This is a single-center study conducted in a cancer-specialized ICU in Brazil. All of the 288 patients hospitalized from May 2006 to June 2008 were included. RIFLE classification, APACHE II, SOFA, and SAPS II scores were calculated and the area under receiver operating characteristic (AROC) curves and logistic multiple regression were performed using hospital mortality as the outcome. Results: AKI, defined by RIFLE criteria, was observed in 156 (54.2%) patients. The distribution of patients with any degree of AKI was: risk, n = 96 (33.3%); injury, n = 30 (10.4%), and failure, n = 30 (10.4%). Mortality was 13.6% for non-AKI patients, 49% for RIFLE `R` patients, 62.3% for RIFLE `I` patients, and 86.8% for RIFLE `F` patients (p = 0.0006). Logistic regression analysis showed that RIFLE criteria, APACHE II, SOFA, and SAPS II were independent factors for mortality in this population. The discrimination of RIFLE was good (AROC 0.801, 95% CI 0.748-0.854) but inferior compared to those of APACHE II (AROC 0.940, 95% CI 0.915-0.966), SOFA (AROC 0.910, 95% CI 0.876-0.943), and SAPS II (AROC 0.869, 95% CI 0.827-0.912). Conclusion: AKI is a frequent complication in ICU patients with cancer. RIFLE was inferior to commonly used prognostic scores for predicting mortality in this cohort of patients. Copyright (C) 2011 S. Karger AG, Basel
Resumo:
Considering that the importance of cancer/testis (CT) antigens in multiple myeloma (MM) biology is still under investigation, the present study aimed to: (1) identify genes differentially expressed in MM using microarray analysis of plasma cell samples, separated according to the number of expressed CTs; (2) examine possible pathways related to MM pathogenesis; (3) validate the expression of candidate genes by quantitative real-time PCR (RQ-PCR). Three samples predominantly positive (>6 expressed), including the U266 cell line, and three samples predominantly negative (0 or 1 expressed CT for the 13 analyzed CT antigens), were submitted for microarray analysis. Validation by RQ-PCR from 24 MM samples showed that the ITGAS gene was downregulated in predominantly positive (>6 expressed CTs, p = 0.0030) and in tumor versus normal plasma cells (p = 0.0182). The RhoD gene was overexpressed in tumor plasma cells when compared to normal plasma cells (p = 0.0339). Results of the microarray analysis corroborate the hypothesis that MM could be separated into predominantly positive and predominantly negative expression. The differential expression of ITGA5 and RhoD suggests disruption of the focal adhesion pathway in MM and offers a new target field to be explored in this disease.
Resumo:
Roots of Pfaffia paniculata have been well documented for multifarious therapeutic values and have also been used for cancer therapy in folk medicine. This study has been performed in a human breast tumor cell line, the MCF-7 cells. These are the most commonly used model of estrogen-positive breast cancer, and it has been originally established in 1973 at the Michigan Cancer Foundation from a pleural effusion taken from a woman with metastatic breast cancer. Butanolic extract of the roots of P. paniculata showed cytotoxic effect MCF-7 cell line. as determined with crystal violet assay, cellular death with acridine orange/ethidium bromide staining, and cell proliferation with immunocytochemistry of bromodeoxyuridine (BrdU). Subcellular alterations were evaluated by electron microscopy. Cells treated With butanolic extract showed degeneration of cytoplasmic components and profound morphological and nuclear alterations. The results show that this butanolic extract indeed presents cytotoxic substances, and its fractions merit further investigations. (C) 2008 Elsevier GmbH. All rights reserved.