364 resultados para TISSUE FACTOR
Resumo:
Introduction. Priapism is one of several symptoms observed in accidental bites by the spider Phoneutria nigriventer. The venom of this spider is comprised of many toxins, and the majority has been shown to affect excitable ion channels, mainly sodium (Na+) channels. It has been demonstrated that PnTx2-6, a peptide extracted from the venom of P. nigriventer, causes erection in anesthetized rats and mice. Aim. We investigated the mechanism by which PnTx2-6 evokes relaxation in rat corpus cavernosum. Main Outcome Measures. PnTx2-6 toxin potentiates nitric oxide (NO)-dependent cavernosal relaxation. Methods. Rat cavernosal strips were incubated with bretylium (3 x 10-5 M) and contracted with phenylephrine (PE; 10-5 M). Relaxation responses were evoked by electrical field stimulation (EFS) or sodium nitroprusside (SNP) before and after 4 minutes of incubation with PnTx2-6 (10-8 M). The effect of PnTx2-6 on relaxation induced by EFS was also tested in the presence of atropine (10-6 M), a muscarinic receptor antagonist, N-type Ca2+ channel blockers (omega-conotoxin GVIA, 10-6 M) and sildenafil (3 x 10-8 M). Technetium99m radiolabeled PnTx2-6 subcutaneous injection was administrated in the penis. Results. Whereas relaxation induced by SNP was not affected by PnTx2-6, EFS-induced relaxation was significantly potentiated by this toxin as well as PnTx2-6 plus SNP. This potentiating effect was further increased by sildenafil, not altered by atropine, however was completely blocked by the N-type Ca2+ channels. High concentrated levels of radiolabeled PnTx2-6 was specifically found in the cavernosum tissue, suggesting PnTx2-6 is an important toxin responsible for P. nigriventer spider accident-induced priapism. Conclusion. We show that PnTx2-6 slows Na+ channels inactivation in nitrergic neurons, allowing Ca2+ influx to facilitate NO/cGMP signalling, which promotes increased NO production. In addition, this relaxation effect is independent of phosphodiesterase enzyme type 5 inhibition. Our data displays PnTx2-6 as possible pharmacological tool to study alternative treatments for erectile dysfunction. Nunes KP, Cordeiro MN, Richardson M, Borges MN, Diniz SOF, Cardoso VN, Tostes R, De Lima ME, Webb RC, and Leite R. Nitric oxide-induced vasorelaxation in response to PnTx2-6 toxin from Phoneutria nigriventer spider in rat cavernosal tissue. J Sex Med 2010;7:3879-3888.
Resumo:
Introduction. Diabetes mellitus (DM) is a risk factor for erectile dysfunction (ED). Although type 2 DM is responsible for 90-95% diabetes cases, type 1 DM experimental models are commonly used to study diabetes-associated ED. Aim. Goto-Kakizaki (GK) rat model is relevant to ED studies since the great majority of patients with type 2 diabetes display mild deficits in glucose-stimulated insulin secretion, insulin resistance, and hyperglycemia. We hypothesized that GK rats display ED which is associated with decreased nitric oxide (NO) bioavailability. Methods. Wistar and GK rats were used at 10 and 18 weeks of age. Changes in the ratio of intracavernosal pressure/mean arterial pressure (ICP/MAP) after electrical stimulation of cavernosal nerve were determined in vivo. Cavernosal contractility was induced by electrical field stimulation (EFS) and phenylephrine (PE). In addition, nonadrenergic-noncholinergic (NANC)- and sodium nitroprusside (SNP)-induced relaxation were determined. Cavernosal neuronal nitric oxide synthase (nNOS) and endothelial nitric oxide synthase (eNOS) mRNA and protein expression were also measured. Main Outcome Measure. GK diabetic rats display ED associated with decreased cavernosal expression of eNOS protein. Results. GK rats at 10 and 18 weeks demonstrated impaired erectile function represented by decreased ICP/MAP responses. Ten-week-old GK animals displayed increased PE responses and no changes in EFS-induced contraction. Conversely, contractile responses to EFS and PE were decreased in cavernosal tissue from GK rats at 18 weeks of age. Moreover, GK rats at 18 weeks of age displayed increased NANC-mediated relaxation, but not to SNP. In addition, ED was associated with decreased eNOS protein expression at both ages. Conclusion. Although GK rats display ED, they exhibit changes in cavernosal reactivity that would facilitate erectile responses. These results are in contrast to those described in other experimental diabetes models. This may be due to compensatory mechanisms in cavernosal tissue to overcome restricted pre-penile arterial blood supply or impaired veno-occlusive mechanisms. Carneiro FS, Giachini FRC, Carneiro ZN, Lima VV, Ergul A, Webb RC, and Tostes RC. Erectile dysfunction in young non-obese type II diabetic Goto-Kakizaki rats is associated with decreased eNOS phosphorylation at Ser1177. J Sex Med 2010;7:3620-3634.
Resumo:
BACKGROUND AND PURPOSE Lipoxin A(4) (LXA(4)) is a lipid mediator involved in the resolution of inflammation. Increased levels of LXA(4) in synovial fluid and enhanced expression of the formyl peptide receptor 2/lipoxin A(4) receptor (FPR2/ALX) in the synovial tissues of rheumatoid arthritis patients have been reported. Endothelins (ETs) play a pivotal pro-inflammatory role in acute articular inflammatory responses. Here, we evaluated the anti-inflammatory role of LXA(4), during the acute phase of zymosan-induced arthritis, focusing on the modulation of ET-1 expression and its effects. EXPERIMENTAL APPROACH The anti-inflammatory effects of LXA(4), BML-111 (agonist of FPR2/ALX receptors) and acetylsalicylic acid (ASA) pre- and post-treatments were investigated in a murine model of zymosan-induced arthritis. Articular inflammation was assessed by examining knee joint oedema; neutrophil accumulation in synovial cavities; and levels of prepro-ET-1 mRNA, leukotriene (LT)B(4), tumour necrosis factor (TNF)-alpha and the chemokine KC/CXCL1, after stimulation. The direct effect of LXA(4) on ET-1-induced neutrophil activation and chemotaxis was evaluated by shape change and Boyden chamber assays respectively. KEY RESULTS LXA(4), BML-111 and ASA administered as pre- or post-treatment inhibited oedema and neutrophil influx induced by zymosan stimulation. Zymosan-induced preproET-1 mRNA, KC/CXCL1, LTB(4) and TNF-alpha levels were also decreased after LXA(4) pretreatment. In vitro, ET-1-induced neutrophil chemotaxis was inhibited by LXA4 pretreatment. LXA(4) treatment also inhibited ET-1-induced oedema formation and neutrophil influx into mouse knee joints. CONCLUSION AND IMPLICATION LXA(4) exerted anti-inflammatory effects on articular inflammation through a mechanism that involved the inhibition of ET-1 expression and its effects.
Resumo:
Objectives Interleukin 33 (IL-33) is a new member of the IL-1 family of cytokines which signals via its receptor, ST2 (IL-33R), and has an important role in Th2 and mast cell responses. This study shows that IL-33 orchestrates neutrophil migration in arthritis. Methods and results Methylated bovine serum albumin (mBSA) challenge in the knee joint of mBSA-immunised mice induced local neutrophil migration accompanied by increased IL-33R and IL-33 mRNA expression. Cell migration was inhibited by systemic and local treatments with soluble (s) IL-33R, an IL-33 decoy receptor, and was not evident in IL-33R-deficient mice. IL-33 injection also induced IL-33R-dependent neutrophil migration. Antigen- and IL-33-induced neutrophil migration in the joint was dependent on CXCL1, CCL3, tumour necrosis factor a (TNF alpha) and IL-1 beta synthesis. Synovial tissue, macrophages and activated neutrophils expressed IL-33R. IL-33 induces neutrophil migration by activating macrophages to produce chemokines and cytokines and by directly acting on neutrophils. Importantly, neutrophils from patients with rheumatoid arthritis successfully treated with anti-TNF alpha antibody (infliximab) expressed significantly lower levels of IL-33R than patients treated with methotrexate alone. Only neutrophils from patients treated with methotrexate alone or from normal donors stimulated with TNF alpha responded to IL-33 in chemotaxis. Conclusions These results suggest that suppression of IL-33R expression in neutrophils, preventing IL-33-induced neutrophil migration, may be an important mechanism of anti-TNF alpha therapy of inflammation.
Resumo:
The aim of this study was to unravel the mechanisms by which interleukin (IL)-10, a potent pleiotropic cytokine, modulates alveolar bone homeostasis in C57BL/6 wild-type (WT) and IL-10 knockout (IL-10 KO) mice, evaluated at 8, 24, and 48 wk of age. Interleukin-10 KO mice presented significant alveolar bone loss when compared with WT mice, and this was not associated with changes in leukocyte counts or bacterial load. The levels of expression of messenger RNA (mRNA) for tumor necrosis factor-alpha (TNF-alpha), IL-1 beta, IL-6, transforming growth factor-beta (TGF-beta), receptor activator of nuclear factor kappa B ligand (RANKL), osteoprotegerin (OPG), and matrix metalloproteinase 13 (MMP13) were similar between both strains, whereas a significant decrease of tissue inhibitor of metalloproteinase 1 (TIMP1) mRNA expression was found at 48 wk in IL-10 KO mice. The osteoblast markers core binding factor alpha1 (CBFA1) and type I collagen (COL-I) were expressed at similar levels in both strains, whereas the levels of alkaline phosphatase (ALP) and osteocalcin (OCN), and those of the osteocyte markers phosphate-regulating gene endopeptidases (PHEX) and dentin matrix protein 1 (DMP1) were significantly lower in IL-10 KO mice. Our results demonstrate that the alveolar bone loss in the absence of IL-10 was associated with a reduced expression of osteoblast and osteocyte markers, an effect independent of microbial, inflammatory or bone-resorptive pathways.
Resumo:
Paracoccidioidomycosis (PCM) is a granulomatous disease caused by a dimorphic fungus, Paracoccidioides brasiliensis (Pb). To determine the influence of nitric oxide (NO) on this disease, we tested cis-[Ru(bpy)2(NO)SO3](PF6), ruthenium nitrosyl, which releases NO when activated by biological reducing agents, in BALB/c mice infected intravenously with Pb 18 isolate. In a previous study by our group, the fungicidal activity of ruthenium nitrosyl was evaluated in a mouse model of acute PCM, by measuring the immune cellular response (DTH), histopathological characteristics of the granulomatous lesions (and numbers), cytokines, and NO production. We found that cis-[Ru(bpy)2(NO)SO3](PF6)-treated mice were more resistant to infection, since they exhibited higher survival when compared with the control group. Furthermore, we observed a decreased influx of inflammatory cells in the lung and liver tissue of treated mice, possibly because of a minor reduction in fungal cell numbers. Moreover, an increased production of IL-10 and a decrease in TNF-alpha levels were detected in lung tissues of infected mice treated with cis-[Ru(bpy)2(NO)SO3](PF6). Immunohistochemistry showed that there was no difference in the number of VEGF- expressing cells. The animals treated with cis-[Ru(bpy)2(NO)SO3](PF6) showed high NO levels at 40 days after infection. These results show that NO is effectively involved in the mechanism that regulates the immune response in lung of Pb-infected mice. These data suggest that NO is a resistance factor during paracoccidioidomycosis by controlling fungal proliferation, influencing cytokine production, and consequently moderating the development of a strong inflammatory response.
Resumo:
Severe dengue infection in humans causes a disease characterized by thrombocytopenia, increased levels of cytokines, increased vascular permeability, hemorrhage, and shock. Treatment is supportive. Activation of platelet-activating factor (PAF) receptor (PAFR) on endothelial cells and leukocytes induces increase in vascular permeability, hypotension, and production of cytokines. We hypothesized that activation of PAFR could account for the major systemic manifestations of dengue infection. Inoculation of adult mice with an adapted strain of Dengue virus caused a systemic disease, with several features of the infection in humans. In PAFR(-/-) mice, there was decreased thrombocytopenia, hemoconcentration, decreased systemic levels of cytokines, and delay of lethality, when compared with WT infected mice. Treatment with UK-74,505, an orally active PAFR antagonist, prevented the above-mentioned manifestations, as well as hypotension and increased vascular permeability, and decreased lethality, even when started 5 days after virus inoculation. Similar results were obtained with a distinct PAFR antagonist, PCA-4246. Despite decreased disease manifestation, viral loads were similar (PAFR(-/-)) or lower (PAFR antagonist) than in WT mice. Thus, activation of PAFR plays a major role in the pathogenesis of experimental dengue infection, and its blockade prevents more severe disease manifestation after infection with no increase in systemic viral titers, suggesting that there is no interference in the ability of the murine host to deal with the infection. PAFR antagonists are disease-modifying agents in experimental dengue infection.
Resumo:
Cholecystokinin (CCK) provides a meal-related signal that activates brainstem neurons, which have reciprocal interconnections with the hypothalamic paraventricular nucleus. Neurons that express corticotrophin-releasing factor (CRF) in the hypothalamus possess anorexigenic effects and are activated during endotoxaemia. This study investigated the effects of CCK(1) receptor blockade on lipopolysaccharide (LPS)-induced hypophagia and hypothalamic CRF neuronal activation. Male Wistar rats were pretreated with a specific CCK(1) receptor antagonist (devazepide; 1 mg kg(-1); I.P.) or vehicle; 30 min later they received LPS (100 mu g kg(-1); I.P.) or saline injection. Food intake, corticosterone responses and Fos-CRF and Fos-alpha-melanocyte-stimulating hormone (alpha-MSH) immunoreactivity in the hypothalamus and Fos-tyrosine hydroxylase immunoreactivity in the nucleus of the solitary tract (NTS) were evaluated. In comparison with saline treatment, LPS administration decreased food intake and increased plasma corticosterone levels, as well as the number of Fos-CRF and Fos-tyrosine hydroxylase double-labelled neurons in vehicle-pretreated rats; no change in Fos-alpha-MSH immunoreactivity was observed after LPS injection. In saline-treated animals, devazepide pretreatment increased food intake, but it did not modify other parameters compared with vehicle-pretreated rats. Devazepide pretreatment partly reversed LPS-induced hypophagia and Fos-CRF and brainstem neuronal activation. Devazepide did not modify the corticosterone and Fos-alpha-MSH responses in rats treated with LPS. In conclusion, the present data suggest that LPS-induced hypophagia is mediated at least in part by CCK effects, via CCK(1) receptor, on NTS and hypothalamic CRF neurons.
Resumo:
Adrenalectomy-induced hypophagia is associated with increased satiety-related responses, which involve neuronal activation of the nucleus of the solitary tract (NTS). Besides its effects on the pituitary-adrenal axis, corticotrophin-releasing factor (CRF) has been shown to play an important role in feeding behaviour, as it possesses anorexigenic effects. We evaluated feeding-induced CRF mRNA expression in the paraventricular nucleus (PVN) and the effects of pretreatment with CRF(2) receptor antagonist (Antisauvagine-30, AS30) on food intake and activation of NTS neurons in response to feeding in adrenalectomised (ADX) rats. Compared to the sham group, ADX increased CRF mRNA levels in the PVN of fasted animals, which was further augmented by refeeding. AS30 treatment did not affect food intake in the sham and ADX + corticosterone (B) groups; however, it reversed hypophagia in the ADX group. In vehicle-pretreated animals, refeeding increased the number of Fos and Fos/TH-immunoreactive neurons in the NTS in the sham, ADX and ADX + B groups, with the highest number of neurons in the ADX animals. Similarly to its effect on food intake, pretreatment with AS30 in the ADX group also reversed the increased activation of NTS neurons induced by refeeding while having no effect in the sham and ADX + B animals. The present results show that adrenalectomy induces an increase in CRF mRNA expression in the PVN potentiated by feeding and that CRF(2) receptor antagonist abolishes the anorexigenic effect and the increased activation of NTS induced by feeding in the ADX animals. These data indicate that increased activity of PVN CRF neurons modulates brainstem satiety-related responses, contributing to hypophagia after adrenalectomy. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Background. Cyclosporine A (CsA)-induced chronic nephrotoxicity is characterized by renal dysfunction and interstitial fibrosis. Early and progressive renal macrophage influx, correlating with latter interstitial fibrotic areas, has been associated with CsA treatment. This study investigated the role of macrophages, the nitric oxide (NO) pathway, and the oxidative stress on chronic CsA nephrotoxicity. Methods. The macrophages were depleted by clodronate liposomes. Animals were distributed into four groups: vehicle (olive oil for 21 days), CsA 7.5 mg/kg per day (21 days), CsA plus clodronate (5 mg/mL intraperitoneally on days -4, 1, 4, 11, and 18 of CsA treatment), or vehicle plus clodronate. On day 22, glomerular filtration rate, renal blood flow, renal tubulointerstitial fibrosis, CsA blood levels, serum malondialdehyde and renal tissue immunohistochemistry for macrophages, inducible NO synthase, transforming growth factor-beta, nuclear factor-k beta, alpha-smooth muscle actin, vimentin, and nitrotyrosine were assessed. Results. CsA-induced increase in the macrophage was prevented by clodronate. Macrophage depletion attenuated the reductions in the glomerular filtration rate and renal blood flow, the development of tubulointerstitial fibrosis, malondialdehyde increase and increases in nuclear factor-k beta, transforming growth factor-beta, vimentin, inducible NO synthase, and nitrotyrosine expression provoked by CsA. Clodronate did not affect alpha-smooth muscle actin expression and CsA blood levels. Conclusions. Renal macrophage influx plays an important role in CsA-induced chronic nephrotoxicity. The NO pathway and oxidative stress are likely mechanisms involved in the genesis of this form of renal injury.
Resumo:
Several studies suggest that hypothalamic cocaine- and amphetamine-regulated transcript (CART) may interact with the hypothalamic-pituitary-adrenal (HPA) axis in the control of neuroendocrine function and may also participate in cardiovascular regulation. Therefore, this study aimed to evaluate, in experimental models of isotonic (I-EVE) and hypertonic (H-EVE) extracellular volume expansion and water deprivation (WD), the activation of CART- and corticotrophin releasing factor (CRF)-immunoreactive neurons, as well as the relative expression of CART and CRF mRNAs in the paraventricular (PVN) and supraoptic (SON) nuclei of the hypothalamus. Both H-EVE (0.30M NaCl, 2mL/100g of body weight, in 1 minute) and 24 hours of WD significantly increased plasma sodium concentrations, producing, respectively, either an increase or a decrease in extracellular volume. I-EVE (0.15M NaCl, 2mL/100g of body weight, in 1 minute) evoked a significant increase in the circulating volume accompanied by unaltered plasma concentrations of sodium. CART-expressing neurons of both magnocellular and parvocellular hypothalamic divisions were activated to produce Fos in response to H-EVE but not in response to I-EVE. Furthermore, increased expression of CART mRNA was found in the PVN of H-EVE but not I-EVE rats. These data show for the first time that EVE not only activates hypothalamic CRF neurons but also increases CRF mRNA expression in the PVN. In contrast, WD increases the number of CART-immunoreactive neurons activated to produce Fos in the PVN and SON but does not change the number of neurons double labeled for Fos and CRF or expression of CRF mRNA in the PVN. These findings provided new insights into the participation of CART in diverse processes within the PVN and SON, including its possible involvement in activation of the HPA axis and cardiovascular regulation in response to changes in extracellular volume and osmolality. (C) 2011 IBRO. Published by Elsevier Ltd. All rights reserved.
Resumo:
Corticotrophin-releasing factor (CRF) and alpha-melanocyte-stimulating hormone (alpha-MSH), both of which are synthesized by hypothalamic neurons, play an essential role in the control of energy homeostasis. Neuroendocrine and behavioural responses induced by lipopolyssacharide (LPS) have been shown to involve prostaglandin-mediated pathways. This study investigated the effects of prostaglandin on CRF and alpha-MSH neuronal activities in LPS-induced anorexia. Male Wistar rats were pretreated with indomethacin (10 mg kg(-1); i.p.) or vehicle; 15 min later they received LPS (500 mu g kg(-1); i.p.) or saline injection. Food intake, hormone responses and Fos-CRF and Fos-alpha-MSH immunoreactivity in the paraventricular and arcuate nuclei, respectively, were evaluated. In comparison with saline treatment, LPS administration induced lower food intake and increased plasma ACTH and corticosterone levels, as well as an increase in Fos-CRF and Fos-alpha-MSH double-labelled neurons in vehicle-pretreated rats. In contrast, indomethacin treatment partly reversed the hypophagic effect, blunted the hormonal increase and blocked the Fos-CRF and Fos-alpha-MSH hypothalamic double labelling increase in response to the LPS stimulus. These data demonstrate that the activation of pro-opiomelanocortin and CRF hypothalamic neurons following LPS administration is at least partly mediated by the prostaglandin pathway and is likely to be involved in the modulation of feeding behaviour during endotoxaemia.
Resumo:
Atrial mechanoreceptors, sensitive to stretch, contribute in regulating heart rate and intravascular volume. The information from those receptors reaches the nucleus tractus solitarius and then the paraventricular nucleus (PVN), known to have a crucial role in the regulation of cardiovascular function. Neurons in the PVN synthesize CRF, AVP, and oxytocin (OT). Stimulation of atrial mechanoreceptors was performed in awake rats implanted with a balloon at the junction of the superior vena cava and right atrium. Plasma ACTH, AVP, and OT concentrations and Fos, CRF, AVP, and OT immunolabeling in the PVN were determined after balloon inflation in hydrated and water-deprived rats. The distension of the balloon increased the plasma ACTH concentrations, which were higher in water-deprived than in hydrated rats (P < 0.05). In addition, the distension in the water-deprived group decreased plasma AVP concentrations (P < 0.05), compared with the respective control group. The distension increased the number of Fos- and double-labeled Fos/CRF neurons in the parvocellular PVN, which was higher in the water-deprived than in the hydrated group (P < 0.01). There was no difference in the Fos expression in magnocellular PVN neurons after distension in hydrated and water-deprived groups, compared with respective controls. In conclusion, parvocellular CRF neurons showed an increase of Fos expression induced by stimulation of right atrial mechanoreceptors, suggesting that CRF participates in the cardiovascular reflex adjustments elicited by volume loading. Activation of CRF neurons in the PVN by cardiovascular reflex is affected by osmotic stimulation.
Resumo:
Inflammatory and infectious processes evoke neuroendocrine and behavioral changes known as acute-phase response that includes activation of the hypothalamo-pituitary-adrenal (HPA) axis and reduction of food intake. Besides its action as the most important ACTH secretagogue, corticotrophin-releasing factor (CRF), synthesized in the paraventricular nucleus (PVN), is also involved in the control of food intake. Alpha-melanocyte stimulating hormone (alpha-MSH) in the arcuate nucleus also plays a role in the energy homeostasis, possessing anorexigenic effects. To investigate the participation of neuropeptides involved in the regulation of food intake during endotoxemia, we administrated lipopolysaccharide (LPS) in sham-operated and adrenalectomized (ADX) male Wistar rats to evaluate food intake, hormone responses and Fos-CRF and Fos-alpha-MSH immunoreactivity in the PVN and arcuate nucleus, as well as CRF and POW mRNA expression in these hypothalamic nuclei. In sham-operated rats, treatment with LPS (100 mu g/kg) showed lower food intake, higher plasma ACTH and corticosterone levels, as well as an increase in Fos-CRF double labeled neurons and CRF mRNA expression in the PVN, with no changes in Fos-alpha-MSH immunoreactivity and POW mRNA expression in the arcuate nucleus, compared to saline treated rats. After LPS treatment, ADX rats showed further increase in plasma ACTH levels, marked decrease of food intake, higher Fos-CRF immunoreactive neurons in the PVN and CRF mRNA expression, as well as an increase in Fos-alpha-MSH immunoreactivity and POW mRNA expression in the arcuate nucleus, compared to sham-operated rats treated with LPS. In conclusion, the present data indicate that the marked hypophagia during endotoxemia following ADX is associated with an increased activation of CRF and POW neurons in the hypothalamus and an increased mRNA expression of these neuropeptides. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
Objective: To elucidate the potential mechanisms involved in the physiopathology of endometriosis. We analyzed the differential gene expression profiles of eutopic and ectopic tissues from women with endometriosis. Design: Prospective laboratory study. Setting: University hospital. Patient(s): Seventeen patients in whom endometriosis was diagnosed and 11 healthy fertile women. Intervention(s): Endometrial biopsy specimens from the endometrium of healthy women without endometriosis and from the eutopic and ectopic endometrium tissues of patients with endometriosis were obtained in the early proliferative phase of the menstrual cycle. Main Outcome Measure(s): Six paired samples of eutopic and ectopic tissue were analyzed by subtractive hybridization. To evaluate the expression of genes found by rapid subtraction hybridization methods, we measured CTGF, SPARC, MYC, MMP and IGFBP1 genes by real-time polymerase chain reaction in all samples. Result(s): This study identified 291 deregulated genes in the endometriotic lesions. Significant expression differences were obtained for SPARC, MYC, and IGFBP1 in the peritoneal lesions and for MMP3 in the ovarian endometriomas. Additionally, significant differences were obtained for SPARC and IGFBP1 between the peritoneal and ovarian lesions. No significant differences were found for the studied genes between the control and the eutopic endometrium. Conclusion(s): This study identified 291 genes with differential expression in endometriotic lesions. The deregulation of the SPARC, MYC, MMP3, and IGFBP1 genes may be responsible for the loss of cellular homeostasis in endometriotic lesions. (Fertil Steril(R) 2010;93:1750-73. (C) 2010 by American Society for Reproductive Medicine.)