320 resultados para Strategy model
Resumo:
Successful surgical treatment of deep bowel endometriosis depends on obtaining detailed information about the lesions, prior to the procedure. The objective of this study was to determine the capability of transvaginal ultrasonography with bowel preparation (TVUS-BP) to predict the presence of one or more rectosigmoid nodules and the deepest bowel layer affected by the disease. A prospective study of 194 patients with clinical and TVUS-BP suspected deep endometriosis submitted to videolaparoscopy. Image data were compared with surgical and histological results. With respect to bowel nodule detection and presence of at least two rectosigmoid lesions, TVUS-BP had a sensitivity of 97 and 81%, specificity 100 and 99%, positive predictive value (PPV) 100 and 93% and negative predictive value (NPV) 98 and 96%, respectively. Regarding diagnosis of infiltration of the submucosal/mucosal layer, TVUS-BP had a sensitivity of 83%, specificity 94%, PPV 77%, NPV 96%. These findings show that TVUS-BP is an adequate exam for evaluating the presence of one or more rectosigmoid nodules and the deepest layer affected in deep infiltrating bowel endometriosis, confirming the importance of this technique for defining the most appropriate surgical strategy to be implemented.
Resumo:
Background: Several studies have already reported the utilization of fibrin glue in microvascular anastomoses to minimize the number of sutures and to decrease the operative time. Despite the good results obtained in most of these experiments, its clinical application has not launched. The aim of this study was to clarify the controversies around the safeness of fibrin glue application in microvascular anastomoses, and also to demonstrate the potential benefits of fibrin glue application in a realistic free flap model. Methods: Twenty-seven rabbits were used in this study The experimental model consisted of a free groin flap transfer to the anterior cervical region. The flap`s circulation was restored by means of an end-to-side anastomosis between the femoral and carotid arteries, and an end-to-end anastomosis between the femoral and external jugular veins. The animals were divided into two groups (n = 10) according to the anastomosis technique: Group I (conventional suture) and group 11 (fibrin glue). Results: The number of sutures required to complete the arterial and venous anastomoses was reduced in 39 and 37% in group 11, respectively. Despite this reduction, the anastomoses maintained adequate patency rates and mechanical strength. Both arterial and venous anastomoses benefited from fibrin glue application, which made them easier and faster to perform. The flaps` ischemic time and the total operative time were also significantly shortened. Conclusions: In this study, the application of fibrin glue in microvascular anastomoses was safe and reliable. The risk-benefit ratio of fibrin glue application in microvascular anastomoses is favorable for its use. (c) 2008 Wiley-Liss, Inc.
Resumo:
Objective: To identify prediction factors for the development of leptospirosis-associated pulmonary hemorrhage syndrome (LPHS). Methods: We conducted a prospective cohort study. The study comprised of 203 patients, aged >= 14 years, admitted with complications of the severe form of leptospirosis at the Emilio Ribas Institute of Infectology (Sao Paulo, Brazil) between 1998 and 2004. Laboratory and demographic data were obtained and the severity of illness score and involvement of the lungs and others organs were determined. Logistic regression was performed to identify independent predictors of LPHS. A prospective validation cohort of 97 subjects with severe form of leptospirosis admitted at the same hospital between 2004 and 2006 was used to independently evaluate the predictive value of the model. Results: The overall mortality rate was 7.9%. Multivariate logistic regression revealed that five factors were independently associated with the development of LPHS: serum potassium (mmol/L) (OR = 2.6; 95% CI = 1.1-5.9); serum creatinine (mmol/L) (OR = 1.2; 95% CI = 1.1-1.4); respiratory rate (breaths/min) (OR = 1.1; 95% CI = 1.1-1.2); presenting shock (OR = 69.9; 95% CI = 20.1-236.4), and Glasgow Coma Scale Score (GCS) < 15 (OR = 7.7; 95% CI = 1.3-23.0). We used these findings to calculate the risk of LPHS by the use of a spreadsheet. In the validation cohort, the equation classified correctly 92% of patients (Kappa statistic = 0.80). Conclusions: We developed and validated a multivariate model for predicting LPHS. This tool should prove useful in identifying LPHS patients, allowing earlier management and thereby reducing mortality. (C) 2009 The British Infection Society. Published by Elsevier Ltd. All rights reserved.
Resumo:
We evaluated the influence of iNOS-derived NO on the mechanics, inflammatory, and remodeling process in peripheral lung parenchyma of guinea pigs with chronic pulmonary allergic inflammation. Animals treated or not with 1400W were submitted to seven exposures of ovalbumin in increasing doses. Seventy-two hours after the 7th inhalation, lung strips were suspended in a Krebs organ bath, and tissue resistance and elastance measured at baseline and after ovalbumin challenge. The strips were submitted to histopathological measurements. The ovalbumin-exposed animals showed increased maximal responses of resistance and elastance (p < 0.05), eosinophils counting (p < 0.001), iNOS-positive cells (p < 0.001), collagen and elastic fiber deposition (p < 0.05), actin density (p < 0.05) and 8-iso-PGF2 alpha expression (p < 0.001) in alveolar septa compared to saline-exposed ones. Ovalbumin-exposed animals treated with 1400 W had a significant reduction in lung functional and histopathological findings (p < 0.05). We showed that iNOS-specific inhibition attenuates lung parenchyma constriction, inflammation, and remodeling, suggesting NO-participation in the modulation of the oxidative stress pathway. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The impact of genetic factors on asthma is well recognized but poorly understood. We tested the hypothesis that different mouse strains present different lung tissue strip mechanics in a model of chronic allergic asthma and that these mechanical differences may be potentially related to changes of extracellular matrix composition and/or contractile elements in lung parenchyma. Oscillatory mechanics were analysed before and after acetylcholine (ACh) in C57BL/10, BALB/c, and A/J mice, subjected or not to ovalbumin sensitization and challenge. In controls, tissue elastance (E) and resistance (R), collagen and elastic fibres` content, and alpha-actin were higher in A/J compared to BALB/c mice, which, in turn, were more elevated than in C57BL/10. A similar response pattern was observed in ovalbumin-challenged animals irrespective of mouse strain. E and R augmented more in ovalbumin-challenged A/J [E: 22%, R: 18%] than C57BL/10 mice [E: 9.4%, R: 11 %] after ACh In conclusion, lung parenchyma remodelled differently yielding distinct in vitro mechanics according to mouse strain. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
We propose a mathematical model to simulate the dynamics of hepatitis C virus (HCV) infection in the state of Sao Paulo, Brazil. We assumed that a hypothetical vaccine, which cost was taken to be the initial cost of the vaccine against hepatitis B exists and it is introduced in the model. We computed its cost-effectiveness compared with the anti-HCV therapy. The calculated basic reproduction number was 1.20. The model predicts that without intervention a steady state exists with an HCV prevalence of 3%, in agreement with the Current epidemiological data. Starting from this steady state three interventions were simulated: indiscriminate vaccination, selective vaccination and anti-HCV therapy. Selective vaccination proved to be the strategy with the best cost-effectiveness ratio, followed by indiscriminate vaccination and anti-HCV therapy.
Resumo:
Meconium (MEC) is a potent inactivator of pulmonary surfactant. The authors studied the effects of polyethylene glycol addition to the exogenous surfactant over the lung mechanics and volumes. Human meconium was administrated to newborn rabbits. Animals were ventilated for 20 minutes and dynamic compliance, ventilatory pressure, and tidal volume were recorded. Animals were randomized into 3 study groups: MEC group (without surfactant therapy); S100 group (100 mg/kg surfactant); and PEG group (100 mg/kg porcine surfactant plus 5% PEG). After ventilation, a pulmonary pressure-volume curve was built. Histological analysis was carried out to calculate the mean alveolar size (Lm) and the distortion index (DI). Both groups treated with surfactant showed higher values of dynamic pulmonary compliance and lower ventilatory pressure, compared with the MEC group (P .05). S100 group had a larger maximum lung volume, V30, compared with the MEC group (P .05). Lm and DI values were smaller in the groups treated with surfactant than in the MEC group (P .05). No differences were observed between the S100 and PEG groups. Animals treated with surfactant showed significant improvement in pulmonary function as compared to nontreated animals. PEG added to exogenous surfactant did not improve lung mechanics or volumes.
Resumo:
Introduction The protective effect of glutamine, as a pharmacological agent against lung injury, has been reported in experimental sepsis; however, its efficacy at improving oxygenation and lung mechanics, attenuating diaphragm and distal organ injury has to be better elucidated. In the present study, we tested the hypothesis that a single early intravenous dose of glutamine was associated not only with the improvement of lung morpho-function, but also the reduction of the inflammatory process and epithelial cell apoptosis in kidney, liver, and intestine villi. Methods Seventy-two Wistar rats were randomly assigned into four groups. Sepsis was induced by cecal ligation and puncture surgery (CLP), while a sham operated group was used as control (C). One hour after surgery, C and CLP groups were further randomized into subgroups receiving intravenous saline (1 ml, SAL) or glutamine (0.75 g/kg, Gln). At 48 hours, animals were anesthetized, and the following parameters were measured: arterial oxygenation, pulmonary mechanics, and diaphragm, lung, kidney, liver, and small intestine villi histology. At 18 and 48 hours, Cytokine-Induced Neutrophil Chemoattractant (CINC)-1, interleukin (IL)-6 and 10 were quantified in bronchoalveolar and peritoneal lavage fluids (BALF and PLF, respectively). Results CLP induced: a) deterioration of lung mechanics and gas exchange; b) ultrastructural changes of lung parenchyma and diaphragm; and c) lung and distal organ epithelial cell apoptosis. Glutamine improved survival rate, oxygenation and lung mechanics, minimized pulmonary and diaphragmatic changes, attenuating lung and distal organ epithelial cell apoptosis. Glutamine increased IL-10 in peritoneal lavage fluid at 18 hours and bronchoalveolar lavage fluid at 48 hours, but decreased CINC-1 and IL-6 in BALF and PLF only at 18 hours. Conclusions In an experimental model of abdominal sepsis, a single intravenous dose of glutamine administered after sepsis induction may modulate the inflammatory process reducing not only the risk of lung injury, but also distal organ impairment. These results suggest that intravenous glutamine may be a potentially beneficial therapy for abdominal sepsis.
Resumo:
Background/Aims: Hepatocellular carcinoma (HCC) is a well recognized complication of advanced NASH (non-alcoholic steatohepatitis). We sought to produce a rat model of NASH, cirrhosis and HCC. Methods: Adult Sprague-Dawley rats, weighing 250-300 g, were fed a choline-deficient, high trans-fat diet and exposed to DEN in drinking water. After 16 weeks, the animals underwent liver ultrasound (US), sacrifice and assessment by microscopy, immunohistochemistry and transmission electron microscopy (TEM). Results: US revealed steatosis and focal lesions in 6 of 7. All had steatohepatitis defined as inflammation, advanced fibrosis and ballooning with Mallory-Denk bodies (MDB) with frank cirrhosis in 6. Areas of more severe injury were associated with anti-CK19 positive ductular reaction. HCC, present in all, were macro-trabecullar or solid with polyhedral cells with foci of steatosis and ballooned cells. CK19 was positive in single or solid nests of oval cells and in neoplastic hepatocytes. TEM showed ballooning with small droplet fat, dilated endoplasmic reticulum and MDB in non-neoplastic hepatocytes and small droplet steatosis in some cancer cells. Conclusions: This model replicated many features of NASH including steatohepatitis with ballooning, fibrosis, cirrhosis and hepatocellular carcinoma. Oval cell proliferation was evident and the presence anti-CK 19 positivity in the cancer suggests oval cell origin of the malignancy. (C) 2008 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.
Resumo:
Indomethacin administration in animals increases permeability of the small intestine, leading to inflammation that mimics Crohn`s disease. Nonsteroidal anti-inflammatory drugs increase the permeability of the intestinal epithelial barrier and should therefore be used with caution in patients with Crohn`s disease. We analyzed the protective effects of octreotide and the tumor necrosis factor-alpha inhibitor infliximab in a rat model of indomethacin-induced enterocolitis. Male Wistar rats received 20 mg of infliximab or 10 mu g of octreotide 24 h prior to injection with indomethacin. Intestinal permeability was analyzed using Cr-51-ethylenediaminetetraacetic acid clearance. No microscopic or macroscopic alterations were observed in the rats receiving infliximab or octreotide, both of which increased permeability (P < 0.001 versus controls). Our macroscopic and microscopic findings might be related to the low specificity of infliximab and suggest that cytokines affect the intestinal epithelial barrier, as evidenced by the protective effect that infliximab had on the permeability parameters evaluated.
Resumo:
There is a positive correlation between the intensity of use of a given antibiotic and the prevalence of resistant strains. The more you treat, more patients infected with resistant strains appears and, as a consequence, the higher the mortality due to the infection and the longer the hospitalization time. In contrast, the less you treat, the higher the mortality rates and the longer the hospitalization time of patients infected with sensitive strains that could be successfully treated. The hypothesis proposed in this paper is an attempt to solve such a conflict: there must be an optimum treatment intensity that minimizes both the additional mortality and hospitalization time due to the infection by both sensitive and resistant bacteria strains. In order to test this hypothesis we applied a simple mathematical model that allowed us to estimate the optimum proportion of patients to be treated in order to minimize the total number of deaths and hospitalization time due to the infection in a hospital setting. (C) 2007 Elsevier Inc. All rights reserved.
Resumo:
Objective. The aim of this study is to test the hypothesis that recruitment maneuvers (RMs) might act differently in models of pulmonary (p) and extrapulmonary (exp) acute lung injury (ALI) with similar transpulmonary pressure changes. Design: Prospective, randomized, controlled experimental study. Setting. University research laboratory. Subjects: Wistar rats were randomly divided into four groups. In control groups, sterile saline solution was intratracheally (0.1 mL, Cp) or intraperitoneally (1 mL, Cexp) injected, whereas ALI animals received Escherichia coli lipopolysaccharide intratracheally (100 jig, ALIp) or intraperitoneally (1 mg, ALIexp). After 24 hrs, animals were mechanically ventilated (tidal volume, 6 mL/kg; positive end-expiratory pressure, 5 cm H2O) and three RMs (pressure inflations to 40 cm H2O for 40 secs, 1 min apart) applied. Measurements and Main Results. Pao(2), lung resistive and viscoelastic pressures, static elastance, lung histology (light and electron microscopy), and type III procollagen messenger RNA expression in pulmonary tissue were measured before RMs and at the end of 1 hr of mechanical ventilation. Mechanical variables, gas exchange, and the fraction of area of alveolar collapse were similar in both ALI groups. After RMs, lung resistive and viscoelastic pressures and static elastance decreased more in ALIexp (255%,180%, and 118%, respectively) than in ALIp (103%, 59%, and 89%, respectively). The amount of atelectasis decreased more in ALIexp than in ALIp (from 58% to 19% and from 59% to 33%, respectively). RMs augmented type III procollagen messenger RNA expression only in the ALIp group (19%), associated with worsening in alveolar epithelium injury but no capillary endothelium lesion, whereas the ALIexp group showed a minor detachment of the alveolar capillary membrane. Conclusions. Given the same transpulmonary pressures, RMs are more effective at opening collapsed alveoli in ALIexp than in ALIp, thus improving lung mechanics and oxygenation with limited damage to alveolar epithelium.
Resumo:
Oral tolerance attenuates changes in in vitro lung tissue mechanics and extracellular matrix remodeling induced by chronic allergic inflammation in guinea pigs. J Appl Physiol 104: 1778-1785, 2008. First published April 3, 2008; doi:10.1152/japplphysiol.00830.2007.-Recent studies emphasize the presence of alveolar tissue inflammation in asthma. Immunotherapy has been considered a possible therapeutic strategy for asthma, and its effect on lung tissue had not been previously investigated. Measurements of lung tissue resistance and elastance were obtained before and after both ovalbumin and acetylcholine challenges. Using morphometry, we assessed eosinophil and smooth muscle cell density, as well as collagen and elastic fiber content, in lung tissue from guinea pigs with chronic pulmonary allergic inflammation. Animals received seven inhalations of ovalbumin (1-5 mg/ml; OVA group) or saline (SAL group) during 4 wk. Oral tolerance (OT) was induced by offering ad libitum ovalbumin 2% in sterile drinking water starting with the 1st inhalation (OT1 group) or after the 4th (OT2 group). The ovalbumin-exposed animals presented an increase in baseline and in postchallenge resistance and elastance related to baseline, eosinophil density, and collagen and elastic fiber content in lung tissue compared with controls. Baseline and post-ovalbumin and acetylcholine elastance and resistance, eosinophil density, and collagen and elastic fiber content were attenuated in OT1 and OT2 groups compared with the OVA group. Our results show that inducing oral tolerance attenuates lung tissue mechanics, as well as eosinophilic inflammation and extracellular matrix remodeling induced by chronic inflammation.
Resumo:
Notified cases of dengue infections in Singapore reached historical highs in 2004 (9459 cases) and 2005 (13 817 cases) and the reason for such all increase is still to be established. We apply a mathematical model for dengue infection that takes into account the seasonal variation in incidence, characteristic of dengue fever, and which mimics the 2004-2005 epidemics in Singapore. We simulated a set of possible control strategies and confirmed the intuitive belief that killing adult mosquitoes is the most effective strategy to control an ongoing epidemic. On the other hand, the control of immature forms was very efficient ill preventing the resurgence of dengue epidemics. Since the control of immature forms allows the reduction of adulticide, it seems that the best strategy is to combine both adulticide and larvicide control measures during an outbreak, followed by the maintenance of larvicide methods after the epidemic has subsided. In addition, the model showed that the mixed strategy of adulticide and larvicide methods introduced by the government seems to be very effective in reducing the number of cases in the first weeks after the start of control.
Resumo:
We developed a model of severe allergic inflammation and investigated the impact of airway and lung parenchyma remodelling on in vivo and in vitro respiratory mechanics. BALB/c mice were sensitized and challenged with ovalbumin in severe allergic inflammation (SA) group. The control group (C) received saline using the same protocol. Light and electron microscopy showed eosinophil and neutrophil infiltration and fibrosis in airway and lung parenchyma, mucus gland hyperplasia, and airway smooth muscle hypertrophy and hyperplasia in SA group. These morphological changes led to in vivo (resistive and viscoelastic pressures, and static elastance) and in vitro (tissue elastance and resistance) lung mechanical alterations. Airway responsiveness to methacholine was markedly enhanced in SA as compared with C group. Additionally, IL-4, IL-5, and IL-13 levels in the bronchoalveolar lavage fluid were higher in SA group. In conclusion, this model of severe allergic lung inflammation enabled us to directly assess the role of airway and lung parenchyma inflammation and remodelling on respiratory mechanics. (C) 2007 Elsevier B.V. All rights reserved.