383 resultados para S-phenyl-mercapturic acid determination
Resumo:
Imatinib (IMAT) is a tyrosine kinase inhibitor that has been used for the treatment of chronic myeloid leukemia (CML). Despite the efficacy of IMAT therapy, some cases of treatment resistance have been described in CML. Developing a plasma method is important since there are several studies that provided a higher correlation between IMAT plasma concentration and response to treatment. Therefore, in this investigation we validated a method by CE as an alternative, new, simple and fast electrophoretic method for IMAT determination in human plasma. The analysis was performed using a fused silica capillary (50 mm id x 46.5 cm total length, 38.0 cm effective length); 50 mmol/L sodium phosphate buffer, pH 2.5, as BGE; hydrodynamic injection time of 20 s (50 mbar); voltage of 30 kV; capillary temperature of 35 degrees C and detection at 200 nm. Plasma samples pre-treatment involved liquid-liquid extraction with methyl-tert-butyl ether as the extracting solvent. The method was linear from 0.125 to 5.00 mg/mL. The LOQ was 0.125 mg/mL. Mean absolute recovery of IMAT was 67%. The method showed to be precise and accurate with RSD and relative error values lower than 15%. Furthermore, the application of the method was performed in the analysis of plasma samples from CML patients undergoing treatment with IMAT.
Resumo:
A complete analysis of H-1 and C-13 NMR spectra of the trypanocidal sesquiterpene lactone eremantholide C and two of its analogues is described. These structurally similar sesquiterpene lactones were submitted to H-1 NMR, C-13 (H-1) NMR, gCOSY, gHSQC, gHMBC, J-resolved and DPFGSE-NOE NMR techniques. The detailed analysis of those results, correlated to some computational calculations (molecular mechanics), led to the total and unequivocal assignment of all H-1 and C-13 NMR data. The determination of all H-1/H-1 coupling constants and all signal multiplicities, together with the elimination of previous ambiguities were also achieved. Copyright (C) 2008 John Wiley & Sons, Ltd.
Resumo:
The present investigation was designed to investigate the effect of the diterpene ent-pimara-8(14),15-dien-19-oic acid (pimaradienoic acid, PA) on smooth muscle extracellular Ca2+ influx. To this end, the effect of PA on phenylephrine- and KCI-induced increases in cytosolic calcium concentration ([Ca2+](c)) measured by the variation in the ratio of fluorescence intensities (R340/ 380 nm) of Fura-2, was analysed. Whether bolus injection of PA could induce hypotensive responses in conscious normotensive rats was also evaluated. PA inhibited the contraction induced by phenylephrine (0.03 or 10 mu mol L-1) and KCI (30 or 90 mmol L-1) in endothelium-denuded rat aortic rings in a concentration dependent manner. Pre-treatment with PA (110, 100, 200 mu mol L-) attenuated the contraction induced by CaCl2 (0.5 nmol L(-)1 or 2.5 mmol L-1) in denuded rat aorta exposed to Ca2+- free medium containing phenylephrine (0.1 mu mol L-1) or KCI (30 mmol L-1). Interestingly, the inhibitory effect displayed by PA on CaCl2-induced contraction was more pronounced when KCI was used as the stimulant. Phenylephrine- and KCI-induced increases in (Ca2+,](c) were inhibited by PA. Similarly, verapamil, a Ca2+-channel blocker, also inhibited the increase in [Ca2+](c) induced by either phenylephrine or KCI. Finally, bolus injection of PA (1-15 mg kg(-1)) produced a dose-dependent decrease in mean arterial pressure in conscious normotensive rats. The results provide the first direct evidence that PA reduces vascular contractility by reducing extracellular Ca2+ influx through smooth muscle cellular membrane, a mechanism that could mediate the hypotensive response induced by this diterpene in normotensive rats.
Resumo:
Aiming at contributing with the search for neuroactive substances from natural sources, we report for the first time antinociceptive and anticonvulsant effects of some Lychnophora species. We verify the protective effects of polar extracts (600 mg/kg, intraperitoneally), and methanolic fractions of L. staavioides and L. rupestris (100 mg/kg, intraperitoneally) in pentylenetetrazole-induced seizures on mice. Previously, a screening was accomplished, evaluating the antinociceptive central activity (hot plate test), with different extracts of L. rupestris, L. staavioides and L. diamantinana. It was possible to select the possible extracts of Lychnophora with central nervous system activity. Some of the active extracts were submitted to fractionation and purification process and the methanolic fractions of L. rupestris (stem) and L. staavioides (stem), with anticonvulsant properties (100 mg/kg, intraperitoneally), yielded 4,5-di-O-[E]-caffeoylquinic acid. This substance was injected intraperitoneally in mice and showed anticonvulsant effect against pentylenetetrazole-induced seizures at doses of 25 and 50 mg/kg. It has often been shown that seizures induced by pentylenetetrazole are involved in inhibition and/or attenuation of GABAergic neurotransmission. However, other systems of the central nervous system such as adenosinergic and glutamatergic could be involved in the caffeoylquinic acid effects. Further studies should be conducted to verify that the target receptor could be participating in this anticonvulsant property. Although other investigations have reported a series of biological activities from Lychnophora species, this is the first report of central analgesic and anticonvulsant activity in species of this genus.
Resumo:
A three-phase liquid-phase microextraction (LPME) method using porous polypropylene hollow fibre membrane with a sealed end was developed for the extraction of mirtazapine (MRT) and its two major metabolites, 8-hydroxymirtazapine (8-OHM) and demethylmirtazapine (DMR), from human plasma. The analytes were extracted from 1.0 mL of plasma, previously diluted and alkalinized with 3.0 mL 0.5 mol L-1 pH 8 phosphate buffer solution and supplemented with 15% sodium chloride (NaCl), using n-hexyl ether as organic solvent and 0.01 moL L-1 acetic acid solution as the acceptor phase. Haloperidol was used as internal standard. The chromatographic analyses were carried out on a chiral column, using acetonitrile-methanol-ethanol (98:1:1, v/v/v) plus 0.2% diethylamine as mobile phase, at a flow rate of 1.0 mL min(-1). Multi-reaction monitoring (MRM) detection was performed by mass spectrometry (MS-MS) using a triple-stage quadrupole and electrospray ionization interface operating in the positive ion mode. The mean recoveries were in 18.3-45.5% range with linear responses over the 1.25-125 ng mL(-1) concentration range for all enantiomers evaluated. The quantification limit (LOQ) was 1.25 ng mL(-1). Within-day and between-day assay precision and accuracy (2.5, 50 and 100 ng mL(-1)) showed relative standard deviation and the relative error lower than 11.9% for all enantiomers evaluated. Finally, the method was successfully used for the determination of mirtazapine and its metabolite enantiomers in plasma samples obtained after single drug administration of mirtazapine to a healthy volunteer. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
The present work investigates the mechanisms involved in the vasorelaxant effect of ent-16 alpha-methoxykauran-19-oic acid (KA-OCH(3)), a semi-synthetic derivative obtained from the kaurane-type diterpene ent-kaur-16-en-19-oic acid (kaurenoic acid). Vascular reactivity experiments were performed in aortic rings isolated from male Wistar rats using standard muscle bath procedures. The cytosolic calcium concentration ([Ca(2+)]c) was measured by confocal microscopy using the fluorescent probe Fluo-3 AM. Blood pressure measurements were performed in conscious rats. KA-OCH(3) (10,50 and 100 mu mol/l) inhibited phenylephrine-induced contraction in either endothelium-intact or endothelium-denuded rat aortic rings. KA-OCH(3) also reduced CaCl(2)-induced contraction in a Ca(2+)-free solution containing KCl (30 mmol/l) or phenylephrine (0.1 mu mol/l). KA-OCH(3) (0.1-300 mu mol/l) concentration-dependently relaxed endothelium-intact and endothelium-denuded aortas pre-contracted with either phenylephrine or KCl, to a greater extent than kaurenoic acid. Moreover, a Ca(2+) mobilisation study showed that KA-OCH(3) (100 mu mol/l) inhibited the increase in Ca(2+) concentration in smooth muscle and endothelial cells induced by phenylephrine or KCl. Pre-incubation of intact or denuded aortic rings with N(G)-nitro-L-arginine methyl ester (L-NAME, 100 mu mol/l), 7-nitroindazole (100 mu mol/l), wortmannin (0.5 mu mol/l) and 1H-[1,2,4]Oxadiazolo[4,3-a]quinoxalin-1-one (ODQ 1 mu mol/l) produced a rightward displacement of the KA-OCH(3) concentration-response curve. Intravenous administration of KA-OCH(3) (1-10 mg/kg) reduced mean arterial blood pressure in normotensive rats. Collectively, our results show that KA-OCH(3) induces vascular relaxation and hypotension. The mechanisms underlying the cardiovascular actions of KA-OCH(3) involve blockade of Ca(2+) influx and activation of the NO-cGMP pathway. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
In addition to adenosine triphosphate (ATP) production, mitochondria have been implicated in the regulation of several physiological responses in plants, such as programmed cell death (PCD) activation. Salicylic acid (SA) and reactive oxygen species (ROS) are essential signaling molecules involved in such physiological responses; however, the mechanisms by which they act remain unknown. In non-photosynthesizing tissues, mitochondria appear to serve as the main source of ROS generation. Evidence suggests that SA and ROS could regulate plant PCD through a synergistic mechanism that involves mitochondria. Herein, we isolate and characterize the mitochondria from non-photosynthesizing cell suspension cultures of Rubus fruticosus. Furthermore, we assess the primary site of ROS generation and the effects of SA on isolated organelles. Mitochondrial Complex III was found to be the major source of ROS generation in this model. In addition, we discovered that SA inhibits the electron transport chain by inactivating the semiquinone radical during the Q cycle. Computational analyses confirmed the experimental data, and a mechanism for this action is proposed.
Resumo:
Fatty acid synthase (FASN) is the metabolic enzyme responsible for the endogenous synthesis of the saturated long-chain fatty acid palmitate. In contrast to most normal cells, FASN is overexpressed in a variety of human cancers including cutaneous melanoma, in which its levels of expression are associated with a poor prognosis and depth of invasion. Recently, we have demonstrated the mitochondrial involvement in FASN inhibition-induced apoptosis in melanoma cells. Herein we compare, via electrospray ionization mass spectrometry (ESI-MS), free fatty acids (FFA) composition of mitochondria isolated from control (EtOH-treated cells) and Orlistat-treated B16-F10 mouse melanoma cells. Principal component analysis (PCA) was applied to the ESI-MS data and found to separate the two groups of samples. Mitochondria from control cells showed predominance of six ions, that is, those of m/z 157 (Pelargonic, 9:0), 255 (Palmitic, 16:0), 281 (Oleic, 18:1), 311 (Arachidic, 20:0), 327 (Docosahexaenoic, 22:6) and 339 (Behenic, 22:0). In contrast, FASN inhibition with Orlistat changes significantly mitochondrial FFA composition by reducing synthesis of palmitic acid, and its elongation and unsaturation products, such as arachidic and behenic acids, and oleic acid, respectively. ESI-MS of mitochondria isolated from Orlistat-treated cells presented therefore three major ions of m/z 157 (Pelargonic, 9:0), 193 (unknown) and 199 (Lauric, 12:0). These findings demonstrate therefore that FASN inhibition by Orlistat induces significant changes in the FFA composition of mitochondria. Copyright (C) 2011 John Wiley & Sons, Ltd.
Resumo:
Fatty acid synthase (FASN) is the metabolic enzyme responsible for the endogenous synthesis of the saturated long-chain fatty acid, palmitate. In contrast to most normal cells, FASN is overexpressed in a variety of human cancers, including cutaneous melanoma, in which its levels of expression are associated with tumor invasion and poor prognosis. We have previously shown that FASN inhibition with orlistat significantly reduces the number of spontaneous mediastinal lymph node metastases following the implantation of B16-F10 mouse melanoma cells in the peritoneal cavity of C57BL/6 mice. In this study, we investigate the biological mechanisms responsible for the FASN inhibition-induced apoptosis in B16-F10 cells. Both FASN inhibitors, cerulenin and orlistat, significantly reduced melanoma cell proliferation and activated the intrinsic pathway of apoptosis, as demonstrated by the cytochrome c release and caspase-9 and -3 activation. Further, apoptosis was preceded by an increase in both reactive oxygen species production and cytosolic calcium concentrations and independent of p53 activation and mitochondrial permeability transition. Taken together, these findings demonstrate the mitochondrial involvement in FASN inhibition-induced apoptosis in melanoma cells. Laboratory Investigation (2011) 91, 232-240; doi:10.1038/labinvest.2010.157; published online 30 August 2010
Resumo:
A method for the determination of artemether (ART) and its main metabolite dihydroartemisinin (DHA) in plasma employing liquid-phase microextraction (LPME) for sample preparation prior to liquid chromatography-tandem mass spectrometry (LC-MS-MS) was developed. The analytes were extracted from 1 nil, of plasma utilizing a two-phase LPME procedure with artemisinin as internal standard. Using the optimized LPME conditions, mean absolute recovery rates of 25 and 32% for DHA and ART, respectively, were achieved using toluene-n-octanol (1:1, viv) as organic phase with an extraction time of 30 min. After extraction, the analytes were resolved within 5 min using a mobile phase consisting of methanol-ammonium acetate (10 mmol L(-1) pH 5.0, 80:20. v/v) on a laboratory-made column based on poly(methyltetradecylsiloxane) attached to a zirconized-silica support. MS-MS detection was employed using an electrospray interface in the positive ion mode. The method developed was linear over the range of 5-1000 ng mL(-1) for both analytes. Precision and accuracy were within acceptable levels of confidence (<15%). The assay was applied to the determination of these analytes in plasma from rats treated with ART. The two-phase LPME procedure is affordable and the solvent consumption was very low compared to the traditional methods of sample preparation. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
A selective and reproducible off-line solid-phase microextraction procedure was developed for the simultaneous enantioselective determination of mirtazapine (MRT), demethylmirtazapine and 8-hydroxymirtazapine in human urine. CE was used for optimization of the extraction procedure whereas LC-MS was used for method validation and application. The influence of important factors in the solid-phase microextraction efficiency is discussed, such as the fiber coatings, extraction time, pH, ionic strength, temperature and desorption time. Before extraction, human urine samples were submitted to enzymatic hydrolysis at 37 degrees C for 16 h. Then, the enzyme was precipitated with trichloroacetic acid and the pH was adjusted to 8 with 1 mol/L pH 11 phosphate buffer solution. In the extraction, the analytes were transferred from the aqueous solution to the polydimethylsiloxane-divinylbenzene fiber coating and then desorbed in methanol. The mean recoveries were 5.4, 1.7 and 1.0% for MRT, demethylmirtazapine and 8-hydroxymirtazapine enantiomers, respectively. The method was linear over the concentration range of 62-1250 ng/mL. The within-day and between-day assay precision and accuracy were lower than 15%. The method was successfully employed in a preliminary cumulative urinary excretion study after administration of racemic MRT to a healthy volunteer.
Resumo:
A CE method is described for the enantioselective analysis of propranolol (Prop) and 4-hydroxypropranolol (4-OH-Prop) in liquid Czapek medium with application in the study of the enantioselective biotransformation of Prop by endophytic fungi. The electrophoretic conditions previously optimized were as follows: an uncoated fused-silica capillary, 4%w/v carboxymethyl-beta-CD in 25 mmol/L triethylamine/phosphoric acid (H(3)PO(4)) buffer at pH 9 as running electrolyte and 17 kV of voltage. UV detection was carried out at 208 nm. Liquid-liquid extraction using diethyl ether: ethyl acetate (1:1 v/v) as extractor solvent was employed for sample preparation. The calibration curves were linear over the concentration range of 0.25-10.0 mu g/mL for each 4-OH-Prop enantiomer and 0.10-10.0 mu g/mL for each Prop enantiomer (r >= 0.995). Within-day and between-day relative standard deviations and relative errors for precision and accuracy were lower than 15% for all the enantiomers. Finally, the validated method was used to evaluate Prop biotransformation in its mammalian metabolite 4-OH-Prop by some selected endophytic fungi. The screening of five strains of endophytic fungi was performed and all of them could biotransform Prop to some extent. Specifically, Glomerella cingulata (VA1) biotransformed 47.8% of (-)-(S)-Prop to (-)-(S)-4-OH-Prop with no formation of (+)-(R)4-OH-Prop in 72 h of incubation.
Resumo:
An experimental design optimization (Box-Behnken design, BBD) was used to develop a CE method for the simultaneous resolution of propranolol (Prop) and 4-hydroxypropranolol enantiomers and acetaminophen (internal standard). The method was optimized using an uncoated fused silica capillary, carboxymethyl-beta-cyclodextrin (CM-beta-CD) as chiral selector and triethylamine/phosphoric acid buffer in alkaline conditions. A BBD for four factors was selected to observe the effects of buffer electrolyte concentration, pH, CM-beta-CD concentration and voltage on separation responses. Each factor was studied at three levels: high, central and low, and three center points were added. The buffer electrolyte concentration ranged from 25 to 75 mM, the pH ranged from 8 to 9, the CM-beta-CD concentration ranged from 3.5 to 4.5%w/v, and the applied run voltage ranged from 14 to 20 W. The responses evaluated were resolution and migration time for the last peak. The obtained responses were processed by Minitab (R) to evaluate the significance of the effects and to find the optimum analysis conditions. The best results were obtained using 4%w/v CM-beta-CD in 25 mM triethylamine/H(3)PO(4) buffer at pH 9 as running electrolyte and 17 kV of voltage. Resolution values of 1.98 and 1.95 were obtained for Prop and 4-hydroxypropranolol enantiomers, respectively. The total analysis time was around of 15 min. The BBD showed to be an adequate design for the development of a CE method, resulting in a rapid and efficient optimization of the pH and concentration of the buffer, cyclodextrin concentration and applied voltage.
Resumo:
Background and purpose: The effects of centrally administered cannabinoids on body core temperature (Tc) and the contribution of endogenous cannabinoids to thermoregulation and fever induced by lipopolysaccharide (LPS) (Sigma Chem. Co., St. Louis, MO, USA) were investigated. Experimental approach: Drug-induced changes in Tc of male Wistar rats were recorded over 6 h using a thermistor probe (Yellow Springs Instruments 402, Dayton, OH, USA) inserted into the rectum. Key results: Injection of anandamide [(arachidonoylethanolamide (AEA); Tocris, Ellisville, MO, USA], 0.01-1 mu g i.c.v. or 0.1-100 ng intra-hypothalamic (i.h.), induced graded increases in Tc (peaks 1.5 and 1.6 degrees C at 4 h after 1 mu g i.c.v. or 10 ng i.h.). The effect of AEA (1 mu g, i.c.v.) was preceded by decreases in tail skin temperature and heat loss index (values at 1.5 h: vehicle 0.62, AEA 0.48). Bell-shaped curves were obtained for the increase in Tc induced by the fatty acid amide hydrolase inhibitor [3-(3-carbamoylphenyl)phenyl] N-cyclohexylcarbamate (Cayman Chemical Co., Ann Arbor, MI, USA) (0.001-1 ng i.c.v.; peak 1.9 degrees C at 5 h after 0.1 ng) and arachidonyl-2-chloroethylamide (ACEA; Tocris) (selective CB(1) agonist; 0.001-1 mu g i.c.v.; peak 1.4 degrees C 5 h after 0.01 mu g), but (R,S)-(+)-(2-Iodo-5-nitrobenzoyl)-[1-(1-methyl-piperidin-2-ylmethyl)-1H-indole-3-yl] methanone (Tocris) (selective CB(2) agonist) had no effect on Tc. AEA-induced fever was unaffected by i.c.v. pretreatment with 6-Iodo-2-methyl-1-[2-(4-morpholinyl)ethyl]-1H-indole-3-yl](4-methoxyphenyl) methanone (Tocris) (selective CB(2) antagonist), but reduced by i.c.v. pretreatment with N-(piperidin-1-yl)-5-(4-iodophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide (AM251; Tocris) (selective CB(1) antagonist). AM251 also reduced the fever induced by ACEA or LPS. Conclusions and implications: The endogenous cannabinoid AEA induces an integrated febrile response through activation of CB(1) receptors. Endocannabinoids participate in the development of the febrile response to LPS constituting a target for antipyretic therapy.
Resumo:
A method for simultaneous determination of seven benzodiazepines (BZPs) (flunitrazepam, clonazepam, oxazepam, lorazepam, chlordiazepoxide, nordiazepam and diazepam using N-desalkylflurazepam as internal standard) in human plasma using liquid-liquid and solid-phase extractions followed by high-performance liquid chromatography (HPLC) is described. The analytes were separated employing a LC-18 DB column (250 mm x 4.6 mm, 5 mu m) at 35 degrees C under isocratic conditions using 5 mM KH(2)PO(4) buffer solution pH 6.0: methanol: diethyl ether (55:40:5, v/v/v) as mobile phase at a flow rate of 0.8 mL min(-1). UV detection was carried out at 245 nm. Employing LLE, the best conditions were achieved with double extraction of 0.5 mL, plasma using ethyl acetate and Na(2)HPO(4) pH 9.5 for pH adjusting. Employing SPE, the best conditions were achieved with 0.5 mL plasma plus 3 mL 0.1 M borate buffer pH 9.5, which were then passed through a C18 cartridge previously conditioned, washed for 3 times with these solvents: 3 mL 0.1 M borate buffer pH 9.5,4 mL Milli-Q water and 1 mL acetonitrile 5%, finally the BZPs elution was carried with diethyl ether: n-hexane: methanol (50:30:20). In both methods the solvent was evaporated at 40 degrees C under nitrogen flow. The validation parameters obtained in LLE were linearity range of 50-1200 ng mL(-1) plasma (r >= 0.9927), limits of quantification of 50 ng mL(-1) plasma, within-day and between-day CV% and E% for precision and accuracy lower than 15%, and recovery above 65% for all BZPs. In SPE, the parameter obtained were linearity range of 30-1200 ng mL(-1) plasma (r >= 0.9900), limits of quantification of 30 ng mL(-1) plasma, within-day and between-day CV% and E% for precision and accuracy lower than 15% and recovery above 55% for all BZPs. These extracting procedures followed by HPLC analysis showed their suitable applicability in order to examine one or more BZPs in human plasma. Moreover, it could be suggested that these procedures might be employed in various analytical applications, in special for toxicological/forensic analysis. (c) 2008 Elsevier B.V. All rights reserved.