19 resultados para uterine cervix
Resumo:
Mycoplasma genitalium (Mg) is a mollicute that causes a range of human urogenital infections. A hallmark of these bacteria is their ability to establish chronic infections that can persist despite completion of appropriate antibiotic therapies and intact and functional immune systems. Intimate adherence and surface colonization of mycoplasmas to host cells are important pathogenic features. However, their facultative intracellular nature is poorly understood, partly due to difficulties in developing and standardizing cellular interaction model systems. Here, we characterize growth and invasion properties of two Mg strains (G37 and 1019V). Mg G37 is a high-passage laboratory strain, while Mg 1019V is a low-passage isolate recovered from the cervix. The two strains diverge partially in gene sequences for adherence-related proteins and exhibit subtle variations in their axenic growth. However, with both strains and consistent with our previous studies, a subset of adherent Mg organisms invade host cells and exhibit perinuclear targeting. Remarkably, intranuclear localization of Mg proteins is observed, which occurred as early as 30 min after infection. Mg strains deficient in adherence were markedly reduced in their ability to invade and associate with perinuclear and nuclear sites.
Resumo:
Synthesis, characterization, crystal structure, and biological studies of two complexes with glycolic acid are described. The solid complexes were formulated as K2[VO(C2H2O3)(C2H3O3)2] H2O (1) and K2[{VO2(C2H2O3)}2] (2) and characterized by X-ray studies, Fourier transform infrared spectroscopy (FTIR), Electron paramagnetic resonance (EPR), and magnetic susceptibility. Conversion of 1 to 2 was studied in aqueous solution by UV-Vis spectroscopy and in the solid state by diffuse reflectance spectroscopy. Complex 2 contains dinuclear [{VO2(C2H2O3)}2]2- anions in which glycolate(2-) is a five-membered chelating ring formed by carboxylate and -hydroxy groups. The geometry around the vanadium in 2 was interpreted as intermediate between a trigonal bipyramid and a square pyramid. Vanadium(IV) is pentacoordinate in 1 as a distorted square pyramid. Complex 1 contains a vanadyl group (V=O) surrounded by two oxygens from deprotonated carboxylate and hydroxy groups forming a five-membered ring. Two oxygens from different glycolates(1-) are bonded to the (V=O) also. Biological analysis for potential cytotoxic effects of 1 was performed using Human Cervix Adenocarcinoma (HeLa) cells, a human cervix adenocarcinoma-derived cell line. After incubation for 48 h, 1 causes 90 and 95% of HeLa cells death at 20 and 200 mol L-1, respectively.
Resumo:
Two new complexes of platinum(II) and silver(I) with acesulfame were synthesized. Acesulfame is in the anionic form acesulfamate (ace). The structures of both complexes were determined by X-ray crystallography. For K(2)[PtCl(2)(ace)(2)] the platinum atom is coordinated to two Cl(-) and two N-acesulfamate atoms forming a trans-square planar geometry. Each K(+) ion interacts with two oxygen atoms of the S(=O)(2) group of each acesulfamate. For the polymeric complex [Ag(ace)](n) the water molecule bridges between two crystallographic equivalent Agl atoms which are related each other by a twofold symmetry axis. Two Agl atoms, related to each other by a symmetry centre, make bond contact with two equivalent oxygen atoms. These bonds give rise to infinite chains along the unit cell diagonal in the ac plane. The in vitro cytotoxic analyses for the platinum complex using HeLa (human cervix cancer) cells show its low activity when compared to the vehicle-treated cells. The Ag(I) complex submitted to in vitro antimycobacterial tests, using the Microplate Alamar Blue (MABA) method, showed a good activity against Mycobacterium tuberculosis, responsible for tuberculosis, with a minimal inhibitory concentration (MIC) value of 11.6 mu M. The Ag(I) complex also presented a promising activity against Gram negative (Escherichia colt and Pseudomonas aeruginosa) and Gram positive (Enterococcus faecalis) microorganisms. The complex K(2)[PtCl(2)(ace)(2)] was also evaluated for antiviral properties against dengue virus type 2 (New Guinea C strain) in Vero cells and showed a good inhibition of dengue virus type 2 (New Guinea G strain) replication at 200 mu M, when compared to vehicle-treated cells. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
We previously demonstrated that Bis[(2-oxindol-3-ylimino)-2-(2-aminoethyl) pyridine-N, N`] copper(II) [Cu(isaepy)(2)] was an efficient inducer of the apoptotic mitochondrial pathway. Here, we deeply dissect the mechanisms underlying the ability of Cu(isaepy)(2) to cause mitochondriotoxicity. In particular, we demonstrate that Cu(isaepy)(2) increases NADH-dependent oxygen consumption of isolated mitochondria and that this phenomenon is associated with oxy-radical production and insensitive to adenosine diphosphate. These data indicate that Cu(isaepy)(2) behaves as an uncoupler and this property is also confirmed in cell systems. Particularly, SH-SY5Y cells show: (i) an early loss of mitochondrial transmembrane potential; (ii) a decrease in the expression levels of respiratory complex components and (iii) a significant adenosine triphosphate (ATP) decrement. The causative energetic impairment mediated by Cu(isaepy)(2) in apoptosis is confirmed by experiments carried out with rho(0) cells, or by glucose supplementation, where cell death is significantly inhibited. Moreover, gastric and cervix carcinoma AGS and HeLa cells, which rely most of their ATP production on oxidative phosphorylation, show a marked sensitivity toward Cu(isaepy)(2). Adenosine monophosphate-activated protein kinase (AMPK), which is activated by events increasing the adenosine monophosphate: ATP ratio, is deeply involved in the apoptotic process because the overexpression of its dominant/negative form completely abolishes cell death. Upon glucose supplementation, AMPK is not activated, confirming its role as fuel-sensing enzyme that positively responds to Cu(isaepy)(2)-mediated energetic impairment by committing cells to apoptosis. Overall, data obtained indicate that Cu(isaepy)(2) behaves as delocalized lipophilic cation and induces mitochondrial-sited reactive oxygen species production. This event results in mitochondrial dysfunction and ATP decrease, which in turn triggers AMPK-dependent apoptosis.