44 resultados para two-mass model
Resumo:
Using Monte Carlo simulations we investigate some new aspects of the phase diagram and the behavior of the diffusion coefficient in an associating lattice gas (ALG) model on different regions of the phase diagram. The ALG model combines a two dimensional lattice gas where particles interact through a soft core potential and orientational degrees of freedom. The competition between soft core potential and directional attractive forces results in a high density liquid phase, a low density liquid phase, and a gas phase. Besides anomalies in the behavior of the density with the temperature at constant pressure and of the diffusion coefficient with density at constant temperature are also found. The two liquid phases are separated by a coexistence line that ends in a bicritical point. The low density liquid phase is separated from the gas phase by a coexistence line that ends in tricritical point. The bicritical and tricritical points are linked by a critical lambda-line. The high density liquid phase and the fluid phases are separated by a second critical tau-line. We then investigate how the diffusion coefficient behaves on different regions of the chemical potential-temperature phase diagram. We find that diffusivity undergoes two types of dynamic transitions: a fragile-to-strong transition when the critical lambda-line is crossed by decreasing the temperature at a constant chemical potential; and a strong-to-strong transition when the critical tau-line is crossed by decreasing the temperature at a constant chemical potential.
Resumo:
Using the superfield formalism, we study the dynamical breaking of gauge symmetry and super-conformal invariance in the N = 1 three-dimensional supersymmetric Chern-Simons model, coupled to a complex scalar superfield with a quartic self-coupling. This is an analogue of the conformally invariant Coleman-Weinberg model in four spacetime dimensions. We show that a mass for the gauge and matter superfields are dynamically generated after two-loop corrections to the effective superpotential. We also discuss the N = 2 extension of our work, showing that the Coleman-Weinberg mechanism in such model is not feasible, because it is incompatible with perturbation theory.
Resumo:
We propose a physically transparent analytic model of astrophysical S factors as a function of a center-of-mass energy E of colliding nuclei (below and above the Coulomb barrier) for nonresonant fusion reactions. For any given reaction, the S(E) model contains four parameters [two of which approximate the barrier potential, U(r)]. They are easily interpolated along many reactions involving isotopes of the same elements; they give accurate practical expressions for S(E) with only several input parameters for many reactions. The model reproduces the suppression of S(E) at low energies (of astrophysical importance) due to the shape of the low-r wing of U(r). The model can be used to reconstruct U(r) from computed or measured S(E). For illustration, we parametrize our recent calculations of S(E) (using the Sao Paulo potential and the barrier penetration formalism) for 946 reactions involving stable and unstable isotopes of C, O, Ne, and Mg (with nine parameters for all reactions involving many isotopes of the same elements, e. g., C+O). In addition, we analyze astrophysically important (12)C+(12)C reaction, compare theoretical models with experimental data, and discuss the problem of interpolating reliably known S(E) values to low energies (E less than or similar to 2-3 MeV).
Resumo:
We adopt the Dirac model for graphene and calculate the Casimir interaction energy between a plane suspended graphene sample and a parallel plane perfect conductor. This is done in two ways. First, we use the quantum-field-theory approach and evaluate the leading-order diagram in a theory with 2+1-dimensional fermions interacting with 3+1-dimensional photons. Next, we consider an effective theory for the electromagnetic field with matching conditions induced by quantum quasiparticles in graphene. The first approach turns out to be the leading order in the coupling constant of the second one. The Casimir interaction for this system appears to be rather weak. It exhibits a strong dependence on the mass of the quasiparticles in graphene.
Resumo:
We propose a model for D(+)->pi(+)pi(-)pi(+) decays following experimental results which indicate that the two-pion interaction in the S wave is dominated by the scalar resonances f(0)(600)/sigma and f(0)(980). The weak decay amplitude for D(+)-> R pi(+), where R is a resonance that subsequently decays into pi(+)pi(-), is constructed in a factorization approach. In the S wave, we implement the strong decay R ->pi(+)pi(-) by means of a scalar form factor. This provides a unitary description of the pion-pion interaction in the entire kinematically allowed mass range m(pi pi)(2) from threshold to about 3 GeV(2). In order to reproduce the experimental Dalitz plot for D(+)->pi(+)pi(-)pi(+), we include contributions beyond the S wave. For the P wave, dominated by the rho(770)(0), we use a Breit-Wigner description. Higher waves are accounted for by using the usual isobar prescription for the f(2)(1270) and rho(1450)(0). The major achievement is a good reproduction of the experimental m(pi pi)(2) distribution, and of the partial as well as the total D(+)->pi(+)pi(-)pi(+) branching ratios. Our values are generally smaller than the experimental ones. We discuss this shortcoming and, as a by-product, we predict a value for the poorly known D ->sigma transition form factor at q(2)=m pi(2).
Resumo:
We analyze the dynamical behavior of a quantum system under the actions of two counteracting baths: the inevitable energy draining reservoir and, in opposition, exciting the system, an engineered Glauber's amplifier. We follow the system dynamics towards equilibrium to map its distinctive behavior arising from the interplay of attenuation and amplification. Such a mapping, with the corresponding parameter regimes, is achieved by calculating the evolution of both the excitation and the Glauber-Sudarshan P function. Techniques to compute the decoherence and the fidelity of quantum states under the action of both counteracting baths, based on the Wigner function rather than the density matrix, are also presented. They enable us to analyze the similarity of the evolved state vector of the system with respect to the original one, for all regimes of parameters. Applications of this attenuation-amplification interplay are discussed.
Resumo:
This paper presents some improvements in the model proposed by Machado et al. [Machado SL, Carvalho MF, Vilar OM. Constitutive model for municipal solid waste. J Geotech Geoenviron Eng ASCE 2002; 128(11):940-51] now considering the influence of biodegradation of organic matter in the mechanical behavior of municipal solid waste. The original framework considers waste as composed of two component groups; fibers and organic paste. The particular laws of behavior are assessed for each component group and then coupled to represent waste behavior. The improvements introduced in this paper take into account the changes in the properties of fibers and mass loss due to organic matter depletion over time. Mass loss is indirectly calculated considering the MSW gas generation potential through a first order decay model. It is shown that as the biodegradation process occurs the proportion of fibers increases, however, they also undergo a degradation process which tends to reduce their ultimate tensile stress and Young modulus. The way these changes influence the behavior of MSW is incorporated in the final framework which captures the main features of the MSW stress-strain behavior under different loading conditions. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
This paper presents a study of the stationary phenomenon of superheated or metastable liquid jets, flashing into a two-dimensional axisymmetric domain, while in the two-phase region. In general, the phenomenon starts off when a high-pressure, high-temperature liquid jet emerges from a small nozzle or orifice expanding into a low-pressure chamber, below its saturation pressure taken at the injection temperature. As the process evolves, crossing the saturation curve, one observes that the fluid remains in the liquid phase reaching a superheated condition. Then, the liquid undergoes an abrupt phase change by means of an oblique evaporation wave. Across this phase change the superheated liquid becomes a two-phase high-speed mixture in various directions, expanding to supersonic velocities. In order to reach the downstream pressure, the supersonic fluid continues to expand, crossing a complex bow shock wave. The balance equations that govern the phenomenon are mass conservation, momentum conservation, and energy conservation, plus an equation-of-state for the substance. A false-transient model is implemented using the shock capturing scheme: dispersion-controlled dissipative (DCD), which was used to calculate the flow conditions as the steady-state condition is reached. Numerical results with computational code DCD-2D vI have been analyzed. Copyright (C) 2009 John Wiley & Sons, Ltd.
Resumo:
A two-dimensional numeric simulator is developed to predict the nonlinear, convective-reactive, oxygen mass exchange in a cross-flow hollow fiber blood oxygenator. The numeric simulator also calculates the carbon dioxide mass exchange, as hemoglobin affinity to oxygen is affected by the local pH value, which depends mostly on the local carbon dioxide content in blood. Blood pH calculation inside the oxygenator is made by the simultaneous solution of an equation that takes into account the blood buffering capacity and the classical Henderson-Hasselbach equation. The modeling of the mass transfer conductance in the blood comprises a global factor, which is a function of the Reynolds number, and a local factor, which takes into account the amount of oxygen reacted to hemoglobin. The simulator is calibrated against experimental data for an in-line fiber bundle. The results are: (i) the calibration process allows the precise determination of the mass transfer conductance for both oxygen and carbon dioxide; (ii) very alkaline pH values occur in the blood path at the gas inlet side of the fiber bundle; (iii) the parametric analysis of the effect of the blood base excess (BE) shows that V(CO2) is similar in the case of blood metabolic alkalosis, metabolic acidosis, or normal BE, for a similar blood inlet P(CO2), although the condition of metabolic alkalosis is the worst case, as the pH in the vicinity of the gas inlet is the most alkaline; (iv) the parametric analysis of the effect of the gas flow to blood flow ratio (Q(G)/Q(B)) shows that V(CO2) variation with the gas flow is almost linear up to Q(G)/Q(B) = 2.0. V(O2) is not affected by the gas flow as it was observed that by increasing the gas flow up to eight times, the V(O2) grows only 1%. The mass exchange of carbon dioxide uses the full length of the hollow-fiber only if Q(G)/Q(B) > 2.0, as it was observed that only in this condition does the local variation of pH and blood P(CO2) comprise the whole fiber bundle.
Resumo:
A three-phase liquid-phase microextraction (LPME) method using porous polypropylene hollow fibre membrane with a sealed end was developed for the extraction of mirtazapine (MRT) and its two major metabolites, 8-hydroxymirtazapine (8-OHM) and demethylmirtazapine (DMR), from human plasma. The analytes were extracted from 1.0 mL of plasma, previously diluted and alkalinized with 3.0 mL 0.5 mol L-1 pH 8 phosphate buffer solution and supplemented with 15% sodium chloride (NaCl), using n-hexyl ether as organic solvent and 0.01 moL L-1 acetic acid solution as the acceptor phase. Haloperidol was used as internal standard. The chromatographic analyses were carried out on a chiral column, using acetonitrile-methanol-ethanol (98:1:1, v/v/v) plus 0.2% diethylamine as mobile phase, at a flow rate of 1.0 mL min(-1). Multi-reaction monitoring (MRM) detection was performed by mass spectrometry (MS-MS) using a triple-stage quadrupole and electrospray ionization interface operating in the positive ion mode. The mean recoveries were in 18.3-45.5% range with linear responses over the 1.25-125 ng mL(-1) concentration range for all enantiomers evaluated. The quantification limit (LOQ) was 1.25 ng mL(-1). Within-day and between-day assay precision and accuracy (2.5, 50 and 100 ng mL(-1)) showed relative standard deviation and the relative error lower than 11.9% for all enantiomers evaluated. Finally, the method was successfully used for the determination of mirtazapine and its metabolite enantiomers in plasma samples obtained after single drug administration of mirtazapine to a healthy volunteer. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Fatty acid synthase (FASN) is the metabolic enzyme responsible for the endogenous synthesis of the saturated long-chain fatty acid palmitate. In contrast to most normal cells, FASN is overexpressed in a variety of human cancers including cutaneous melanoma, in which its levels of expression are associated with a poor prognosis and depth of invasion. Recently, we have demonstrated the mitochondrial involvement in FASN inhibition-induced apoptosis in melanoma cells. Herein we compare, via electrospray ionization mass spectrometry (ESI-MS), free fatty acids (FFA) composition of mitochondria isolated from control (EtOH-treated cells) and Orlistat-treated B16-F10 mouse melanoma cells. Principal component analysis (PCA) was applied to the ESI-MS data and found to separate the two groups of samples. Mitochondria from control cells showed predominance of six ions, that is, those of m/z 157 (Pelargonic, 9:0), 255 (Palmitic, 16:0), 281 (Oleic, 18:1), 311 (Arachidic, 20:0), 327 (Docosahexaenoic, 22:6) and 339 (Behenic, 22:0). In contrast, FASN inhibition with Orlistat changes significantly mitochondrial FFA composition by reducing synthesis of palmitic acid, and its elongation and unsaturation products, such as arachidic and behenic acids, and oleic acid, respectively. ESI-MS of mitochondria isolated from Orlistat-treated cells presented therefore three major ions of m/z 157 (Pelargonic, 9:0), 193 (unknown) and 199 (Lauric, 12:0). These findings demonstrate therefore that FASN inhibition by Orlistat induces significant changes in the FFA composition of mitochondria. Copyright (C) 2011 John Wiley & Sons, Ltd.
Resumo:
Electrospray ionization mass spectrometric analysis of lapachol (2-hydroxy-3-(3-methy1-2-butenyl)-1,4-naphthoquinone) was accomplished in order to elucidate the gas-phase dissociation reactions of this important biologically active natural product. The occurrence of protonated and cationized species in the positive mode and of deprotonated species in the negative mode was explored by means of collision-induced dissociation (CID) experiments. For the protonated molecule, the H(2)O and C(4)H(8) losses occur by two competitive channels. For the deprotonated molecule, the even-electron rule is not conserved, and the radicalar species are eliminated by formation of distonic anions. The fragmentation mechanism for each ion was suggested on the basis of computational thermochemistry. Atomic charges, relative energies, and frontier orbitals were employed aiming at a better understanding of the gas-phase reactivity of lapachol. Potential energy surfaces for fragmentation reactions were obtained by the B3LYP/6-31+G(d,p) model. Copyright (C) 2010 John Wiley & Sons, Ltd.
Resumo:
This article presents a proposal of a systemic model composed for the micro and small companies (MSE) of the region of Ribeiro Preto and the agents which influenced their environment. The proposed model was based on Stafford Beer`s (Diagnosing the system for organizations. Chichester, Wiley, 1985) systemic methodologies VSM (Viable System Model) and on Werner Ulrich`s (1983) CSH (Critical Systems Heuristics). The VSM is a model for the diagnosis of the structure of an organization and of its flows of information through the application of the cybernetics concepts (Narvarte, In El Modelo del Sistema Viable-MSV: experiencias de su aplicacin en Chile. Proyecto Cerebro Colectivo del IAS, Santiago, 2001). On the other hand, CSH focus on the context of the social group applied to the systemic vision as a counterpoint to the organizational management view considered by the VSM. MSE of Ribeiro Preto and Sertozinho had been analyzed as organizations inserted in systems that relate and integrate with other systems concerning the public administration, entities of representation and promotion agencies. The research questions: which are the bonds of interaction among the subsystems in this process and who are the agents involved? The systemic approach not only diagnosed a social group, formed by MSE of Ribeiro Preto and Sertozinho, public authorities and support entities, but could also delineate answers that aimed the clarification of obscure questions generating financial assistance to the formularization of efficient actions for the development of this system.
Resumo:
Real time three-dimensional echocardiography (RT3DE) has been demonstrated to be an accurate technique to quantify left ventricular (LV) volumes and function in different patient populations. We sought to determine the value of RT3DE for evaluating patients with hypertrophic cardiomyopathy (HCM), in comparison with cardiac magnetic resonance imaging (MRI). Methods: We studied 20 consecutive patients with HCM who underwent two-dimensional echocardiography (2DE), RT3DE, and MRI. Parameters analyzed by echocardiography and MRI included: wall thickness, LV volumes, ejection fraction (LVEF), mass, geometric index, and dyssynchrony index. Statistical analysis was performed by Lin agreement coefficient, Pearson linear correlation and Bland-Altman model. Results: There was excellent agreement between 2DE and RT3DE (Rc = 0.92), 2DE and MRI (Rc = 0.85), and RT3DE and MRI (Rc = 0.90) for linear measurements. Agreement indexes for LV end-diastolic and end-systolic volumes were Rc = 0.91 and Rc = 0.91 between 2DE and RT3DE, Rc = 0.94 and Rc = 0.95 between RT3DE and MRI, and Rc = 0.89 and Rc = 0.88 between 2DE and MRI, respectively. Satisfactory agreement was observed between 2DE and RT3DE (Rc = 0.75), RT3DE and MRI (Rc = 0.83), and 2DE and MRI (Rc = 0.73) for determining LVEF, with a mild underestimation of LVEF by 2DE, and smaller variability between RT3DE and MRI. Regarding LV mass, excellent agreement was observed between RT3DE and MRI (Rc = 0.96), with bias of -6.3 g (limits of concordance = 42.22 to -54.73 g). Conclusion: In patients with HCM, RT3DE demonstrated superior performance than 2DE for the evaluation of myocardial hypertrophy, LV volumes, LVEF, and LV mass.
Resumo:
Objective: To evaluate whether the number of vessels disease has an impact on clinical outcomes as well as on therapeutic results accordingly to medical, percutaneous, or surgery treatment in chronic coronary artery disease. Methods: We evaluated 825 individuals enrolled in MASS study, a randomized study to compare treatment options for single or multivessel coronary artery disease with preserved left ventricular function, prospectively followed during 5 years. The incidence of overall mortality and the composite end-point of death, myocardial infarction, and refractory angina were compared in three groups: single vessel disease (SVD n = 214), two-vessel disease (2VD n = 253) and three-vessel disease (3VD n = 358). The relationship between baseline variables and the composite end-point was assessed using a Cox proportional hazards survival model. Results: Most baseline characteristics were similar among groups, except age (younger in SVD and older in 3VD, p < 0.001), lower incidence of hypertension in SVD (p < 0.0001), and lower levels of total and LDL-cholesterol in 3VD (p = 0.004 and p = 0.005, respectively). There were no statistical differences in composite end-point in 5 years among groups independent of the kind of treatment; however, there was a higher mortality rate in 3VD (p < 0.001). When we stratified our analysis for each treatment option, bypass surgery was associated with a tower number of composite end-point in all groups (SVD p < 0.001, 2VD p = 0.002, 3VD p < 0.001). In multivariate analysis, we found higher mortality risk in 3VD comparing to SVD (p = 0.005, HR 3.14, 95%Cl 1.4-7.0). Conclusion: Three-vessel disease was associated with worse prognosis compared to single-or two-vessel disease in patients with stable coronary disease and preserved ventricular function at 5-year follow-up. In addition, event-free survival rates were higher after bypass surgery, independent of the number of vessels diseased in these subsets of patients. (c) 2008 European Association for Cardio-Thoracic Surgery. Published by Elsevier B.V. All rights reserved.