59 resultados para thermogravimetric analysis (TGA), viscoelasticity, x-ray photoelectron spectroscopy (XPS)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Preparation methods can profoundly affect the structural and electrochemical properties of electrocatalytic coatings. In this investigation, RuO(2)-Ta(2)O(5) thin films containing between 10 and 90 at.% Ru were prepared by the Pechini-Adams method. These coatings were electrochemically and physically characterized by cyclic voltammetry, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). The composition and morphology of the oxide were investigated before and after accelerated life tests (ALT) by EDX and SEM. SEM results indicate typical mud-flat-cracking morphology for the majority of the films. High resolution SEMs reveal that pure oxide phases exhibit nanoporosity while binary compositions display a very compact structure. EDX analyses reveal considerable amounts of Ru in the coating even after total deactivation. XRD indicated a rutile-type structure for RuO(2) and orthorhombic structure for Ta(2)O(5). XPS data demonstrate that the binding energy of Ta is affected by Ru addition in the thin films, but the binding energy of Ru is not likewise influenced by Ta. The stability of the electrodes was evaluated by ALT performed at 750 mA cm(-2) in 80 degrees C 0.5 mol dm(-3) H(2)SO(4). The performance of electrodes prepared by the Pechini-Adams method is 100% better than that of electrodes prepared by standard thermal decomposition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Catalytic properties of copper thin films deposited in small channels and cavities were tested using Raman microscopy and mass spectroscopy (MS) techniques, mainly. The catalytic surface conditions were addressed visually and chemically by optical microscopy and X-ray photoelectron spectroscopy (XPS), respectively. The experimental conditions of present work induced copper oxidation; eventually a number of carbon species and graphite remained on the catalytic surface. Quartz crystal microbalance and mass spectroscopy data support both adsorption and catalysis phenomena. MS showed CO2 formation during n-hexane heating process but not to 2-propanol, probably due to redox reactions. XPS of copper surface present in the cavity after catalysis tests detected Cu2O and a range of possible carbon species. The adsorption and catalytic performance of copper films deposited in cavities and microchannels were quite similar. A simple miniaturized device for microanalysis was proposed. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thin silicon nitride films were prepared at 350 degrees C by inductively coupled plasma chemical vapor deposition on Si(100) substrates under different NH(3)/SiH(4) or N(2)/SiH(4) gas mixture. The chemical composition and bonding structure of the deposited films were investigated as a function of the process parameters, such as the gas flow ratio NH(3)/SiH(4) or N(2)/SiH(4) and the RF power, using X-ray photoelectron spectroscopy (XPS). The gas flow ratio was 1.4, 4.3, 7.2 or 9.5 and the RF power, 50 or 100 W. Decomposition results of Si 2p XPS spectra indicated the presence of bulk Si, under-stoichiometric nitride, stoichiometric nitride Si(3)N(4), oxynitride SiN(x)O(y), and stoichiometric oxide SiO(2), and the amounts of these compounds were strongly influenced by the two process parameters. These results were consistent with those obtained from N 1s XPS spectra. The chemical composition ratio N/Si in the film increased with increasing the gas flow ratio until the gas flow ratio reached 4.3, reflecting the high reactivity of nitrogen, and stayed almost constant for further increase in gas flow ratio, the excess nitrogen being rejected from the growing film. A considerable and unexpected incorporation of contaminant oxygen and carbon into the depositing film was observed and attributed to their high chemical reactivity. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

TiO2 thin films, employed in dye-sensitized solar cells, were prepared by the sol-gel method or directly by Degussa P25 oxide and their surfaces were characterized by X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). The effect of adsorption of the cis-[Ru(dcbH(2))(2)(NCS)(2)] dye, N3, on the surface of films was investigated. From XPS spectra taken before and after argon-ion sputtering procedure, the surface composition of inner and outer layers of sensitized films was obtained and a preferential etching of Ru peak in relation to the Ti and N ones was identified. The photoelectrochemical parameters were also evaluated and rationalized in terms of the morphological characteristics of the films. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this work is to address the activation process of a high temperature shift (HTS) catalyst, composed of Fe2O3/Cr2O3/CuO, by analyzing it before activation (HTS-V) and after activation (HTS-A) using complementary characterization techniques. The textural and morphological characterizations were done by transmission electron rnicroscopy (TEM) and nitrogen physisorption at 77 K; crystallographic structure was confirmed by X-ray diffraction (XRD); electronic structure was analyzed by X-ray absorption spectroscopy (XAS) and the chemical composition of the catalyst`s surface was obtained by X-ray photoelectron spectroscopy (XPS). The investigation pointed out that the HTS-V catalyst presents good textural and morphological properties, which are not deeply affected by the activation process (sample HTS-A). The iron oxide phase in the HTS-V catalyst is hematite whereas in HTS-A catalyst is magnetite with Fe2+/Fe3+ ratio close to the expected value (0.5). For both samples, the Cr ions seem to be incorporated in the iron oxide lattice with higher concentration at particle surface. In the HTS-V catalyst, the Cu ions have oxidation number II and occupy in average distorted octahedral sites; after the activation, the Cu ions are partially reduced, suggesting that the reduction of the Cu species is complex. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes an investigation on CuO and CuO-ZnO catalysts supported on CeO(2) and CeO(2)-La(2)O(3) oxides, which were designed for the low temperature water-gas shift reaction (WGSR). Bulk catalysts were prepared by co-precipitation of metal nitrates and characterized by energy-dispersive spectroscopy (EDS), X-ray diffraction (XRD), surface area (by the BET method), X-ray photoelectron spectroscopy (XPS), and in situ X-ray absorption near edge structure (XANES). The catalysts` activities were tested in the forward WGSR, and the CuO/CeO(2) catalyst presented the best catalytic performance. The reasons for this are twofold: (1) the presence of Zn inhibits the interaction between Cu and Ce ions, and (2) lanthanum oxide forms a solid solution with cerium oxide, which will cause a decrease in the surface area of the catalysts. Also the CuO/CeO(2) catalyst presented the highest Cu content on the surface, which could influence its catalytic behavior. Additionally, the Cu and Cu(1+) species could influence the catalytic activity via a reduction-oxidation mechanism, corroborating to the best catalytic performance of the Cu/Ce catalyst. (c) 2010 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The development of efficient anti-corrosion and environmentally friendly coating systems are needed for the replacement of the highly toxic Cr-based conversion coatings for corrosion protection of aluminum alloys. In this study, we demonstrate that the direct application of ceramic cerium-based sol-gel coatings to AA7075-T6 substrates produces high-performance anti-corrosion layers. Electrochemical experiments and analyses of the microstructure demonstrate that the protective layers are very efficient for the passivation of the alloy surfaces operating as both passive and active barrier for corrosion protection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Carbon-supported platinum is commonly used as an anode electrocatalyst in low-temperature fuel cells fueled with methanol. The cost of Pt and the limited world supply are significant barriers for the widespread use of this type of fuel cell. Moreover, Pt used as anode material is readily poisoned by carbon monoxide produced as a byproduct of the alcohol oxidation. Although improvements in the catalytic performance for methanol oxidation were attained using Pt-Ru alloys, the state-of-the-art Pt-Ru catalyst needs further improvement because of relatively low catalytic activity and the high cost of noble Pt and Ru. For these reasons, the development of highly efficient ternary platinum-based catalysts is an important challenge. Thus, various compositions of ternary Pt(x)-(RuO(2)-M)(1-x)/C composites (M = CeO(2), MoO(3), or PbO(x)) were developed and further investigated as catalysts for the methanol electro-oxidation reaction. The characterization carried out by X-ray diffraction, energy-dispersive X-ray analysis, transmission electron microscopy, X-ray photoelectron spectroscopy, and cyclic voltammetry point out that the different metallic oxides were successfully deposited on the Pt/C, producing small and well-controlled nanoparticles in the range of 2.8-4.2 nm. Electrochemical experiments demonstrated that the Pt(0.50)(RuO(2)-CeO(2))(0.50)/C composite displays the higher catalytic activity toward the methanol oxidation reaction (lowest onset potential of 207 mV and current densities taken at 450 mV, which are 140 times higher than those at commercial Pt/C), followed by the Pt(0.75)(RuO(2)-MoO(3))(0.25)/C composite. In addition, both of these composites produced low quantities of formic acid and formaldehyde when compared to a commercially available Pt(0.75)-Ru(0.25)/C composite (from E-Tek, Inc.), suggesting that the oxidation of methanol occurs mainly by a pathway that produces CO(2) forming the intermediary CO(ads).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this work is the production and preliminary characterization of adsorbent new materials useful for sensor development. A new plasma chamber was simulated and designed in order to obtain multiple layers and/or composites in a single step. Plasma deposited organic fluorocompound and hexamethyldisilazane (HMDS) thin films were produced and tested as adsorbent layers. Chemical characterization used ellipsometry, Raman. infrared and X-ray photoelectron spectroscopy. Hydrophobic and oleophobic character were determined by contact angle measurements. Adsorption characteristics were evaluated using quartz crystal microbalance. Not only HMDS but also the fluorocompound can polymerize but intermixing and a double layer are only obtained in very narrow conditions. The films are adsorbent and mildly hydrophobic. Films deposited on a microchromatographic column can be used on sample pretreatment to remove and/or preconcentrate volatile organic Compounds. Therefore, with this approach it is possible to obtain films with different monomers on double layer or composites, with organic/inorganic materials or particles and use them on sample pretreatment for chemical analysis. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

When a multilayered material is analyzed by means of energy-dispersive X-ray fluorescence analysis, then the X-ray ratios of K alpha/K beta, or L alpha/L beta and L alpha/L gamma, for an element in the multilayered material, depend on the composition and thickness of the layer in which the element is situated, and on the composition and thickness of the superimposed layer (or layers). Multilayered samples are common in archaeometry, for example, in the case of pigment layers in paintings, or in the case of gilded or silvered alloys. The latter situation is examined in detail in the present paper, with a specific reference to pre-Columbian alloys from various museums in the north of Peru. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work the effect of doping concentration and depth profile of Cu atoms on the photocatalytic and surface properties of TiO(2) films were studied. TiO(2) films of about 200 nn thickness were deposited on glass substrates on which a thin Cu layer (5 nm) was deposited. The films were annealed during 1 s to 100 degrees C and 400 degrees C, followed by chemical etching of the Cu film. The grazing incidence X-ray fluorescence measurements showed a thermal induced migration of Cu atoms to depths between 7 and 31 nm. The X-ray photoelectron spectroscopy analysis detected the presence of TiO(2), Cu(2)O and Cu(0) phases and an increasing Cu content with the annealing temperature. The change of the surface properties was monitored by the increasing red-shift and absorption of the ultraviolet-visible spectra. Contact angle measurements revealed the formation of a highly hydrophilic surface for the film having a medium Cu concentration. For this sample photocatalytic assays, performed by methylene blue discoloration, show the highest activity. The proposed mechanism of the catalytic effect, taking place on Ti/Cu sites, is supported by results obtained by theoretical calculations. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polysaccharide natural seed coat from the tree Magonia pubescens, in the form of hydrogel was used to remove metals in aqueous solution. Swelling tests indicate that seed coat presents hydrogel behavior, with maximum water absorption of 292 g water/g. Adsorption experiments performed using Na(+), Mg(2+), K(+), Ca(2+), Cr(3+), Fe(3+) and Zn(2+) demonstrated that the polysaccharide structure has a high capacity to extract these ions from the aqueous solution. Scanning electron microscopy revealed significant morphological changes of the material before and after water contact. Differential scanning calorimetry measurements indicate a signal shift of the water evaporation temperature in the material with adsorbed zinc. X-ray photoelectron spectroscopy analysis combined with theoretical studies by the density functional theory and on Hartree-Fock (HF) level evidence that the metallic ions were adsorbed through coordination with hydroxyl groups of polysaccharide. In the case of Zn(2+) the lowest HF energy was observed for the tetracoordination mode, where Zn(2+) is coordinated by two hydroxyl groups and two water molecules.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ordered intermetallic phases of Pt with several transition metals have been prepared and their electrocatalytic properties studied. In light of these tests it is proposed that these catalysts could be used as electrodes in fuel cells, as they combine an excellent capacity to adsorb organic fuels at the Pt sites with low susceptibility to being poisoned by intermediates and reaction products at the transition-metal sites. An experimental procedure used to obtain the four intermetallic phases Pt-M (M = Mn, Pb, Sb and Sn) is described. The phases thus produced were characterized by X-ray diffraction, scanning electron microscopy with surface analysis by energy-dispersive X-ray spectrometry, scanning tunneling microscopy and X-ray photoelectron spectroscopy. The data thus obtained support the conclusion that the method described here is highly effective for the preparation of Pt-M phases featuring a range of structural and electronic modifications that will allow a useful relation to be established between their physicochemical properties and predicted electrocatalytic activity. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The evolution of internal stresses in oxide scales growing on polycrystalline Fe(3)Al alloy in atmospheric air at 700 degrees C was determined using in situ energy-dispersive synchrotron X-ray diffraction. Ex situ texture analyses were performed after 5 h of oxidation at 700 degrees C. Under these conditions, the oxide-scale thickness, as determined by X-ray photoelectron spectroscopy, lies between 80 and 100 nm. The main phase present in the oxide scales is alpha-Al(2)O(3), with minor quantities of metastable theta-Al(2)O(3) detected in the first minutes of oxidation, as well as alpha-Fe(2)O(3). alpha-Al(2)O(3) grows with a weak (0001) fiber texture in the normal direction. During the initial stages of oxidation the scale develops, increasing levels of compressive stresses which later evolve to a steady state condition situated around -300 MPa. (C) 2010 International Centre for Diffraction Data. [DOI: 10.1154/1.3402764]

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The local order and distribution of Na in the mixed alkali metaphosphate glasses K(x)Na(1-x)PO(3) were analyzed, with the aim to identify segregation or a random mixture of both cation species. X-Ray photoelectron spectroscopy and several nuclear magnetic resonance (NMR) techniques were applied, including (31)P and (23)Na high-resolution spectroscopy, (23)Na triple quantum-MAS NMR, rotational echo double resonance between (31)P and (23)Na, and (23)Na NMR spin echo decay. The structural picture emerging from these results reveals the similarity in the local Na environments in the glasses but also subtle structural adjustments with increasing degree of K replacement. While both cations are intimately mixed at the atomic scale, the (23)Na spin echo decay data suggest a detectable like-cation preference in the spatial distribution of the ions. These structural properties are consistent with those determined in Li-Rb metaphosphates, indicating that the origin of the mixed alkali effect observed in the conductivity of Na-K metaphosphate glasses may also be explained by structurally blocked ion diffusion.