35 resultados para surface oxygen complexes


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The high velocity oxygen fuel (HVOF) thermal spray process produces highly wear and/or corrosion resistant coatings. Tungsten carbide with a metallic binder is often used for this purpose. In this work, tungsten carbide coatings containing cobalt or nickel binder were produced by HVOF and characterised by optical and electron microscopy, hardness and a dry sand/rubber wheel abrasion test. The HVOF process produced dense coatings with low porosity levels and high hardness. The wear resistance of the specimens, which were surface treated, increased as the roughness percentage decreased. Tungsten carbide nickel based coating yielded the best wear resistance in the as sprayed condition. However, the wear rate and wear of the two coatings converged to the same values as the number of revolutions increased. Wear behaviour in the ground condition was similar, although the tungsten carbide cobalt based coating yielded better performance with increasing distance travelled during the wear test.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aluminum toxicity is one of the major soil factors limiting root growth in acidic soils. Because of the increase in organic matter content in the upper few centimeters of soils under no-till systems (NTS), most Al in soil solution may be complexed to dissolved organic C (DOC), thus decreasing its bioavailability. The aim of this study was to evaluate the effects of surface liming on Al speciation in soil solution in Brazilian sites under NTS. Field experiments were performed in two regions with contrasting climates and levels of soil acidity: Rondonopolis, Mato Grosso State, on a Rhodic Haplustox, and Ponta Grossa, Parana State, on a Typic Hapludox. The treatments consisted of a control and three lime rates, surface applied to raise the base saturation to 50, 70, and 90%. Soil solution was obtained at soil water equilibrium (1:1 w/w soil/water ratio). The effects of surface liming on soil chemical attributes and on the composition of the soil solution were dependent on weather conditions, time under NTS, and soil weathering. Most Al in soil solution was complexed to DOC, representing about 70 to 80% of the total Al at pH <5.0, and about 30 to 4096 at pH >5.0. Under pH 5.5, the results were closely correlated with the solubility line for amorphous Al. Organic complexes may control Al(3+) release into soil solution at pH <5.5. Results suggest that in areas under NTS for a long period of time, Al toxicity might decrease due to its complexation to high-molecular-weight organic compounds.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hydrochemical processes involved in the development of hydromorphic Podzols are a major concern for the upper Amazon Basin because of the extent of the areas affected by such processes and the large amounts of organic carbon and associated metals exported to the rivers. The dynamics and chemical composition of ground and surface waters were studied along an Acrisol-Podzol sequence lying in an open depression of a plateau. Water levels were monitored along the sequence over a period of 2 years by means of piezometers. Water was sampled in zero-tension lysimeters for groundwater and for surface water in the drainage network of the depression. The pH and concentrations of organic carbon and major elements (Si, Fe and Al) were determined. The contrasted changes reported for concentrations of Si, organic carbon and metals (Fe, Al) mainly reflect the dynamics of the groundwater and the weathering conditions that prevail in the soils. Iron is released by the reductive dissolution of Fe oxides, mostly in the Bg horizons of the upslope Acrisols. It moves laterally under the control of hydraulic gradients and migrates through the iron-depleted Podzols where it is exported to the river network. Aluminium is released from the dissolution of Al-bearing minerals (gibbsite and kaolinite) at the margin of the podzolic area but is immobilized as organo-Al complexes in spodic horizons. In downslope positions, the quick recharge of the groundwater and large release of organic compounds lead to acidification and a loss of metals (mainly Al), previously stored in the Podzols.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Food foams such as marshmallow, Chantilly and mousses have behavior and stability directly connected with their microstructure, bubble size distribution and interfacial properties. A high interfacial tension inherent to air/liquid foams interfaces affects its stability, and thus it has a direct impact on processing, storage and product handling. In this work, the interactions of egg albumin with various types of polysaccharides were investigated by drop tensiometry, interfacial rheology and foam stability. The progressive addition of egg albumin and polysaccharide in water induced a drop of the air-water surface tension which was dependent on the pH and polysaccharide type. At pH 4, that is below the isoeletric point of egg albumen (pI = 4.5) the surface tension was decreased from 70 mN/m to 42 mN/m by the presence of the protein, and from 70 mN/m to 43 mN/m, 40 mN/m and 38 mN/m by subsequent addition of xanthan, guar gum and kappa-carrageenan, respectively. At pH 7.5 the surface tension was decreased from 70 mN/m to 43 mN/m by the simultaneous presence of the protein and kappa-carrageenan. However, a higher surface tension of 48 and 50 mN/m was found when xanthan and guar gum were added, respectively, when compared with carrageenan addition. The main role on the stabilization of protein-polysaccharide stabilized interfaces was identified on the elasticity of the interface. Foam stability experiments confirmed that egg-albumin/kappa-carrageenan at pH below the protein isoeletric point are the most efficient systems to stabilize air/water interfaces. These results clearly indicate that protein-polysaccharide coacervation at the air/water interface is an efficient process to increase foam stability. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Exposure to oxygen may induce a lack of functionality of probiotic dairy foods because the anaerobic metabolism of probiotic bacteria compromises during storage the maintenance of their viability to provide benefits to consumer health. Glucose oxidase can constitute a potential alternative to increase the survival of probiotic bacteria in yogurt because it consumes the oxygen permeating to the inside of the pot during storage, thus making it possible to avoid the use of chemical additives. This research aimed to optimize the processing of probiotic yogurt supplemented with glucose oxidase using response surface methodology and to determine the levels of glucose and glucose oxidase that minimize the concentration of dissolved oxygen and maximize the Bifidobacterium longum count by the desirability function. Response surface methodology mathematical models adequately described the process, with adjusted determination coefficients of 83% for the oxygen and 94% for the B. longum. Linear and quadratic effects of the glucose oxidase were reported for the oxygen model, whereas for the B. longum count model an influence of the glucose oxidase at the linear level was observed followed by the quadratic influence of glucose and quadratic effect of glucose oxidase. The desirability function indicated that 62.32 ppm of glucose oxidase and 4.35 ppm of glucose was the best combination of these components for optimization of probiotic yogurt processing. An additional validation experiment was performed and results showed acceptable error between the predicted and experimental results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Despite the increase in the use of natural compounds in place of synthetic derivatives as antioxidants in food products, the extent of this substitution is limited by cost constraints. Thus, the objective of this study was to explore the synergism on the antioxidant activity of natural compounds, for further application in food products. Three hydrosoluble compounds (x(1) = caffeic acid, x(2) = carnosic acid, and x(3) = glutathione) and three liposoluble compounds (x(1) = quercetin, x(2) = rutin, and x(3) = genistein) were mixed according to a ""centroid simplex design"". The antioxidant activity of the mixtures was analyzed by the ferric reducing antioxidant power (FRAP) and oxygen radical absorbance capacity (ORAL) methodologies, and activity was also evaluated in an oxidized mixed micelle prepared with linoleic acid (LAOX). Cubic polynomial models with predictive capacity were obtained when the mixtures were submitted to the LAOX methodology ((y) over cap = 0.56 x(1) + 0.59 x(2) + 0.04 x(3) + 0.41 x(1)x(2) - 0.41 x(1)x(3) - 1.12 x(2)x(3) - 4.01 x(1)x(2)x(3)) for the hydrosoluble compounds, and to FRAP methodology ((y) over cap = 3.26 x(1) + 2.39 x(2) + 0.04 x(3) + 1.51 x(1)x(2) + 1.03 x(1)x(3) + 0.29 x(1)x(3) + 3.20 x(1)x(2)x(3)) for the liposoluble compounds. Optimization of the models suggested that a mixture containing 47% caffeic acid + 53% carnosic acid and a mixture containing 67% quercetin + 33% rutin were potential synergistic combinations for further evaluation using a food matrix.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study the interaction between magnetic nanoparticles (MNPs) surface-coated with meso-2,3-dimercaptosuccinic acid (DMSA) with both bovine serum albumin (BSA) and human serum albumin (HSA) was investigated. The binding of the MNP-DMSA was probed by the fluorescence quenching of the BSA and HSA tryptophan residue. Magnetic resonance and light microscopy analyses were carried out in in vivo tests using female Swiss mice. The binding constants (K(b)) and the complex stoichiometries (n) indicate that MNP-DMSA/BSA and MNP-DMSA/HSA complexes have low association profiles. After five minutes following intravenous injection of MNP-DMSA into mice`s blood stream we found the lung firstly target by the MNP-DMSA, followed by the liver in a latter stage. This finding suggests that the nanoparticle`s DMSA-coating process probably hides the thiol group, through which albumin usually binds. This indicates that biocompatible MNP-DMSA is a very promising material system to be used as a drug delivery system (DDS), primarily for lung cancer treatment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Surface pressure (pi)-molecular area (A) curves were used to characterize the packing of pseudo-ternary mixed Langmuir monolayers of egg phosphatidylcholine (EPC), 1,2-dioleoyl-3-trimethylammonium propane (DOTAP) and L-alpha-dioleoyl phosphatidylethanolamine (DOPE). This pseudo-ternary mixture EPC/DOPE/DOTAP has been successfully employed in liposome formulations designed for DNA non-viral vectors. Pseudo-binary mixtures were also studied as a control. Miscibility behavior was inferred from pi-A curves applying the additivity rule by calculating the excess free energy of mixture (Delta G(Exc)). The interaction between the lipids was also deduced from the surface compressional modulus (C(s)(-1)). The deviation from ideality shows dependence on the lipid polar head type and monolayer composition. For lower DOPE concentrations, the forces are predominantly attractive. However, if the monolayer is DOPE rich, the DOTAP presence disturbs the PE-PE intermolecular interaction and the net interaction is then repulsive. The ternary monolayer EPC/DOPE/DOTAP presented itself in two configurations, modulated by the DOPE content, in a similar behavior to the DOPE/DOTAP monolayers. These results contribute to the understanding of the lipid interactions and packing in self-assembled systems associated with the in vitro and in vivo stability of liposomes. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have formed and characterized polycrystalline diamond films with surfaces having hydrogen terminations, oxygen terminations, or fluorine terminations, using a small, simple and novel plasma gun to bombard the diamond surface, formed by plasma assisted CVD in a prior step, with ions of the wanted terminating species. The potential differences between surface regions with different terminations were measured by Kelvin Force Microscopy (KFM). The highest potential occurred for oxygen termination regions and the lowest for fluorine. The potential difference between regions with oxygen terminations and hydrogen terminations was about 80 mV, and between regions with hydrogen terminations and fluorine terminations about 150 mV. Regions with different terminations were identified and imaged using the secondary electron signal provided by scanning electron microscopy (SEM). since this signal presents contrast for surfaces with different electrical properties. The wettability of the surfaces with different terminations was evaluated, measuring contact angles. The sample with oxygen termination was the most hydrophilic, with a contact angle of 75 degrees. hydrogen-terminated regions with 83 degrees, and fluorine regions 93 degrees, the most hydrophobic sample. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

2-Benzoylpyridine-phenylhydrazone (H2BzPh), 2-benzoylpyridine-para-chloro-phenylhydrazone (H2BzpClPh), and 2-benzoylpyridine-para-nitro-phenyl (H2BzpNO(2)Ph) hydrazone were obtained and fully characterized, as well as their zinc(II) complexes [Zn(H2BzPh)Cl(2)] (1), [Zn(H2BzClPh)Cl(2)] (2) and [Zn(H2BzpNO(2)Ph)Cl(2)] (3). During the syntheses of complex 1 a second product crystallized, which was characterized as [Zn(2BzPh)(2)] (1a). Upon re-crystallization in 1: 9 DMSO: acetone conversion of 2 into [Zn(H2BzpClPh)Cl2] center dot H(2)O (2a) and of 3 into [Zn(2BzpNO(2)Ph)Cl(DMSO)] (3a) occurred. The crystal structures of 1a, 2a and 3a were determined. In 1a the two nearly perpendicular H2BzPh ligands give rise to a distorted octahedral environment around the metal. The 5-fold coordination around the metal is completed with two chloride ions in 2a and with one chloride and one oxygen atom from DMSO in 3a. (c) 2008 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two coordination octahedral Sn(IV) complexes [Sn(L)(2)] and cis-[SnCl(2)(L)(dmso)], where H(2)L is 2-hydroxyacetophenone (S-benzydithiocarbazate), were prepared and characterized by elemental analysis, IR, NMR ((1)H, (13)C), (119)Sn Mossbauer spectroscopies and X-ray diffraction techniques to investigate their structural properties. Both crystallize in the Monoclinic system, with parameters: a = 8.1905(3), b = 30.8811(15), c = 12.8959(7) angstrom, beta = 94.465(3)degrees and Z = 4 for [Sn(L)(2)] and a = 8.5247(2), b = 21.5445(7), c = 12.3706(3) angstrom, beta = 96.932(2)degrees and Z = 4 for cis-[SnCl(2)(L)(dmso)]. In both complexes, the Sn(IV) central atom is coordinated in a distorted octahedral geometry with the thiolate ligand (L(2-)) coordinated via O, N and S atoms. The (119)Sn Mossbauer spectroscopy of the complexes were studied and the results revealed that both complexes posses isomer shift (delta) and quadrupole splitting (Delta), which are almost the same.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Five novel organotin complexes with the anthraquinone dyes alizarin (1,2-dihydroxyanthraquinone) and purpurin (1,2,4-trihydroxyanthraquinone) were synthesized and characterized by elemental analyses, FTIR and NMR spectroscopy ((1)H, (13)C and (119)Sn). The crystal and Molecular structures Of four complexes were determined by X-ray diffraction on single crystals: [Bu(2)Sn(aliz)(H(2)O)]center dot C(2)H(5)OH (A1 center dot EtO H), [Bu(2)Sn(aliz)(dmso)](2) (A3), [(Bu(2)Sn)(3)O(Hpurp)(2)] (P1) and [Bu(2)Sn(Hpurp)(dmso)](2) (P2), where H(2)aliz = alizarin and H(3)purp = purpurin. The coordination mode of the ligands is identical to that found in their Al/Ca complexes, where they act as dianionic tridentate ligands forming five and six-membered fused chelate rings. The coordination to the tin atoms occurs exclusively via the 1,2- phenolate oxygen and the adjacent quinoid oxygen atoms. The complexes A1, A3 and P1 are dimers with hepta-coordinated tin atoms in form of a slightly distorted pentagonal bipyramid. The trinuclear complex P2 contains two pentacoordinated and one heptacoordinated tin atoms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two new complexes of platinum(II) and silver(I) with acesulfame were synthesized. Acesulfame is in the anionic form acesulfamate (ace). The structures of both complexes were determined by X-ray crystallography. For K(2)[PtCl(2)(ace)(2)] the platinum atom is coordinated to two Cl(-) and two N-acesulfamate atoms forming a trans-square planar geometry. Each K(+) ion interacts with two oxygen atoms of the S(=O)(2) group of each acesulfamate. For the polymeric complex [Ag(ace)](n) the water molecule bridges between two crystallographic equivalent Agl atoms which are related each other by a twofold symmetry axis. Two Agl atoms, related to each other by a symmetry centre, make bond contact with two equivalent oxygen atoms. These bonds give rise to infinite chains along the unit cell diagonal in the ac plane. The in vitro cytotoxic analyses for the platinum complex using HeLa (human cervix cancer) cells show its low activity when compared to the vehicle-treated cells. The Ag(I) complex submitted to in vitro antimycobacterial tests, using the Microplate Alamar Blue (MABA) method, showed a good activity against Mycobacterium tuberculosis, responsible for tuberculosis, with a minimal inhibitory concentration (MIC) value of 11.6 mu M. The Ag(I) complex also presented a promising activity against Gram negative (Escherichia colt and Pseudomonas aeruginosa) and Gram positive (Enterococcus faecalis) microorganisms. The complex K(2)[PtCl(2)(ace)(2)] was also evaluated for antiviral properties against dengue virus type 2 (New Guinea C strain) in Vero cells and showed a good inhibition of dengue virus type 2 (New Guinea G strain) replication at 200 mu M, when compared to vehicle-treated cells. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mitochondria contain their own genome, a small circular molecule of around 16.5 kbases. The mitochondrial DNA (mtDNA) encodes for only 13 polypeptides, but its integrity is essential for mitochondrial function, as all 13 proteins are regulatory subunits of the oxidative phosphorylation complexes. Nonetheless, the mtDNA is physically associated with the inner mitochondrial membrane, where the majority of the cellular reactive oxygen species are generated. In fact, the mitochondrial DNA accumulates high levels of oxidized lesions, which have been associated with several pathological and degenerative processes. The cellular responses to nuclear DNA damage have been extensively studied, but so far little is known about the functional outcome and cellular responses to mtDNA damage. In this review we will discuss the mechanisms that lead to damage accumulation and the in vitro models we are establishing to dissect the cellular responses to oxidative damage in the mtDNA and to sort out the differential cellular consequences of accumulation of damage in each cellular genome, the nuclear and the mitochondrial genome.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report an effective approach for the construction of a biomimetic sensor of multicopper oxidases by immobilizing a cyclic-tetrameric copper(II) species, containing the ligand (4-imidazolyl)ethylene-2-amino-1-ethylpyridine (apyhist), in the Nafion (R) membrane on a vitreous carbon electrode surface. This complex provides a tetranuclear arrangement of copper ions that allows an effective reduction of oxygen to water, in a catalytic cycle involving four electrons. The electrochemical reduction of oxygen was studied at pH 9.0 buffer solution by using cyclic voltammetry, chronoamperometry, rotating disk electrode voltammetry and scanning electrochemical microscopy techniques. The mediator shows good electrocatalytic ability for the reduction of O(2) at pH 9.0, with reduction of overpotential (350 mV) and increased current response in comparison with results obtained with a bare glassy carbon electrode. The heterogeneous rate constant (k(ME)`) for the reduction of O(2) at the modified electrode was determined by using a Koutecky-Levich plot. In addition, the charge transport rate through the coating and the apparent diffusion coefficient of O(2) into the modifier film were also evaluated. The overall process was found to be governed by the charge transport through the coating, occurring at the interface or at a finite layer at the electrode/coating interface. The proposed study opens up the way for the development of bioelectronic devices based on molecular recognition and self-organization. (C) 2010 Elsevier Ltd. All rights reserved.