22 resultados para sorbifolin 6 o beta glucopyranoside


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Systemic amyloid light-chain (LC) amyloidosis is a disease process characterized by the pathological deposition of monoclonal LCs in tissue. All LC subtypes are capable of fibril formation although lambda chains, particularly those belonging to the lambda 6 type, are overrepresented. Here, we report the thermodynamic and in vitro fibrillogenic properties of several mutants of the lambda 6 protein 6aJL2 in which Pro7 and/or His8 was substituted by Ser or Pro. The H8P and H8S mutants were almost as stable as the wildtype protein and were poorly fibrillogenic. In contrast, the P7S mutation decreased the thermodynamic stability of 6aJL2 and greatly enhanced its capacity to form amyloid-like fibrils in vitro. The crystal structure of the P7S mutant showed that the substitution induced both local and long-distance effects, such as the rearrangement of the V(L) (variable region of the light chain)-V(L) interface. This mutant crystallized in two orthorhombic polymorphs, P2(1)2(1)2(1) and C222(1). In the latter, a monomer that was not arranged in the typical Bence-Jones dimer was observed for the first time. Crystal-packing analysis of the C222(1) lattice showed the establishment of intermolecular beta-beta interactions that involved the N-terminus and beta-strand B and that these could be relevant in the mechanism of LC fibril formation. Our results strongly suggest that Pro7 is a key residue in the conformation of the N-terminal sheet switch motif and, through long-distance interactions, is also critically involved in the contacts that stabilized the V(L) interface in lambda 6 LCs. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

1,3-beta-Glucan depolymerizing enzymes have considerable biotechnological applications including biofuel production, feedstock-chemicals and pharmaceuticals. Here we describe a comprehensive functional characterization and low-resolution structure of a hyperthermophilic laminarinase from Thermotoga petrophila (TpLam). We determine TpLam enzymatic mode of operation, which specifically cleaves internal beta-1,3-glucosidic bonds. The enzyme most frequently attacks the bond between the 3rd and 4th residue from the non-reducing end, producing glucose, laminaribiose and laminaritriose as major products. Far-UV circular dichroism demonstrates that TpLam is formed mainly by beta structural elements, and the secondary structure is maintained after incubation at 90 degrees C. The structure resolved by small angle X-ray scattering, reveals a multi-domain structural architecture of a V-shape envelope with a catalytic domain flanked by two carbohydrate-binding modules. Crown Copyright (C) 2011 Published by Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Spodoptera frugiperda beta-1,3-glucanase (SLam) was purified from larval midgut. It has a molecular mass of 37.5 kDa, an alkaline optimum pH of 9.0, is active against beta-1,3-glucan (laminarin), but cannot hydrolyze yeast beta-1,3-1,6-glucan or other polysaccharides. The enzyme is an endoglucanase with low processivity (0.4), and is not inhibited by high concentrations of substrate. In contrast to other digestive beta-1,3-glucanases from insects, SLam is unable to lyse Saccharomyces cerevisae cells. The cDNA encoding SLam was cloned and sequenced, showing that the protein belongs to glycosyl hydrolase family 16 as other insect glucanases and glucan-binding proteins. Multiple sequence alignment of beta-1,3-glucanases and beta-glucan-binding protein supports the assumption that the beta-1,3-glucanase gene duplicated in the ancestor of mollusks and arthropods. One copy originated the derived beta-1,3-glucanases by the loss of an extended N-terminal region and the beta-glucan-binding proteins by the loss of the catalytic residues. SLam homology modeling suggests that E228 may affect the ionization of the catalytic residues, thus displacing the enzyme pH optimum. SLam antiserum reacts with a single protein in the insect midgut. Immunocytolocalization shows that the enzyme is present in secretory vesicles and glycocalyx from columnar cells. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The major beta-1,3-glucanase from Tenebrio molitor (TLam) was purified to homogeneity (yield, 6%; enrichment, 113 fold; specific activity, 4.4 U/mg). TLam has a molecular weight of 50 kDa and a pH optimum of 6. It is an encloglucanase that hydrolyzes beta-1,3-glucans as laminarin and yeast beta-1,3-1,6-glucan, but is inactive toward other polysaccharides (as unbranched beta-1,3-glucans or mixed beta-1,3-1,4-glucan from cereals) or disaccharides. The enzyme is not inhibited by high substrate concentrations and has low processivity (0.6). TLam has two ionizable groups involved in catalysis, and His, Tyr and Arg residues plus a divalent ion at the active site. A Cys residue important for TLam activity is exposed after laminarin binding. The cDNA coding for this enzyme was cloned and sequenced. It belongs to glycoside hydrolase family 16, and is related to other insect glucanases and glucan-binding proteins. Sequence analysis and homology modeling allowed the identification of some residues (E174, E179, H204, Y304, R127 and R181) at the active site of the enzyme, which may be important for TLam activity. TLam efficiently lyses fungal cells, suggesting a role in making available walls and cell contents to digestion and in protecting the midgut from pathogen infections. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper the synthesis, photo luminescence and electroluminescence investigation of the novel tetrakis beta-diketonate of rare-earth complexes such as M[Eu(dbM)(4)] and M[Tb(acac)(4)] with a variety of cationic ligands, M=Li(+), Na(+) and K(+) have been investigated. The emission spectra of the Eu(3+) and Tb(3+) complexes displayed characteristic narrow bands arising from intraconfigurational transitions of trivalent rare-earth ions and exhibited red color emission for the Eu(3+) ion ((5)D(0) -> F(J), J=0-6) and green for the Tb(3+) ion ((5)D(4) -> (7)F(J), J = 6-0). The lack of the broaden emission bands arising from the ligands suggests the efficient intramolecular energy transfer from the dbm and acac ligands to Eu(3+) and Tb(3+) ions, respectively. In accordance to the expected, the values of PL quantum efficiency (eta) of the emitting (5)D(0) state of the tetrakis(beta-diketonate) complexes of Eu(3+) were higher compared with those tris-complexes. Therefore, organic electroluminescent (EL) devices were fabricated with the structure as follows: indium tin oxide (ITO)/hole transport layer (HTL) NPB or MTCD/emitter layer M[RE(beta-diketonate)(4)] complexes)/Aluminum (Al). All the films were deposited by thermal evaporation carried out in a high vacuum environment system. The OLED light emission was independent of driving voltage, indicating that the combination of charge carriers generates excitons within the M[RE(beta-diketonate)(4)] layers, and the energy is efficiently transferred to RE(3+) ion. As a best result, a pure red and green electroluminescent emission was observed from the Eu(3+) and Tb(3+) devices, confirmed by (X,Y) color coordinates. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The triruthenium carboxylate cluster [Ru(3)O(OAc)(6)(py)(2)(bpp)](+) (OAc = acetate) containing the bridging 1,3-bis(4-pyridyl)propane (bpp) ligand, and its dimeric species [{Ru(3)O(OAc)(6)(py(2))}(2)(mu-bpp)](2+) were synthesized in order to investigate their inclusion compounds with beta-cyclodextrin (beta-CD). Characterization of the complexes was carried out based on spectroscopic, electrochemical and spectroelectrochemical techniques, while the formation of inclusion complexes was evaluated using (1)H NMR/NOESY spectroscopy. Since bpp is a flexible ligand, a DFT study was carried out in order to characterize its conformational isomers and their possible role in the host-guest chemistry with beta-CD. Instead of observing the formation of inclusion compounds with different stoichiometries, we observed the formation of 1:1 bpp/beta-CD compounds in which the bpp ligand assumes different conformations. The assembly of polymetallic rotaxane species was successfully demonstrated by monitoring the (1)H NMR spectra of the monomeric cluster species in the presence of aquapentacyanoferrate(II) ions and beta-CD.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vanillin was found to be efficient as a deactivator of ferrylmyoglobin with a second-order rate constant of k(2) = S7 +/- 1 L mol(-1) s(-1) for reduction to metmyoglobin with Delta H(double dagger) = 58.3 +/- 0.3 kJ mol(-1) and Delta S(double dagger) = -14 +/- 1 J mol(-1) K(-1) in aqueous pH 7.4 solution at 25 degrees C. Binding to beta-lactoglobulin (AG) was found to affect the reactivity of vanillin at 25 degrees C only slightly to k(2) = 48 +/- 2 L mol(-1) s(-1) (Delta H(double dagger) = 68.4 +/- 0.4 kJ mol(-1) and Delta S(double dagger) = 17 +/- 1 J mol(-1) K(-1)) for deactivation of ferrylmyoglobin. Binding of vanillin to beta LG was found to have a binding stoichiometry vanillin/beta LG > 10 with K(A) = 6 x 10(2) L mol(-1) and an apparent total Delta H degrees of approximately -38 kJ mol(-1) and Delta S degrees = -S5.4 +/- 4J mol(-1) K(-1) at 25 degrees C and Delta C(p), (obs) = -1.02 kJ mol(-1) K(-1) indicative of increasing ordering in the complex, as determined by isothermal titration microcalorimetry. From tryptophan fluorescence quenching for beta LG by vanillin, approximately one vanillin was found to bind to each beta LG far stronger with K(A) = 5 x 10(4) L, mol(-1) and a Delta H degrees = 10.2 kJ mol(-1) and Delta S degrees = 55J mol(-1) K(-1) at 25 degrees C. The kinetic entropy/enthalpy compensation effect seen for vanillin reactivity by binding to beta LG is concluded to relate to the weakly bound vanillin oriented through hydrogen bonds on the beta LG surface with the phenolic group pointing toward the solvent, in effect making both Delta H(double dagger) and Delta S(double dagger) more positive. The more strongly bound vanillin capable of tryptophan quenching in the fiLG calyx seems less or nonreactive.