24 resultados para solid phase epitaxy recrystallization
Resumo:
An analytical procedure for the separation and quantification of ethyl acetate, ethyl butyrate, ethyl hexanoate, ethyl lactate, ethyl octanoate, ethyl nonanoate, ethyl decanoate, isoamyl octanoate, and ethyl laurate in cachaca, rum, and whisky by direct injection gas chromatography-mass spectrometry was developed. The analytical method is simple, selective, and appropriated for the determination of esters in distilled spirits. The limit of detection ranged from 29 (ethyl hexanoate) to 530 (ethyl acetate) mu g L-1, whereas the standard deviation for repeatability was between 0.774% (ethyl hexanoate) and 5.05% (isoamyl octanoate). Relative standard deviation values for accuracy vary from 90.3 to 98.5% for ethyl butyrate and ethyl acetate, respectively. Ethyl acetate was shown to be the major ester in cachaca (median content of 22.6 mg 100 mL(-1) anhydrous alcohol), followed by ethyl lactate (median content of 8.32 mg 100 mL(-1) anhydrous alcohol). Cachaca produced in copper and hybrid alembic present a higher content of ethyl acetate and ethyl lactate than those produced in a stainless-steel column, whereas cachaca produced by distillation in a stainless-steel column present a higher content of ethyl octanoate, ethyl decanoate, and ethyl laurate. As expected, ethyl acetate is the major ester in whiskey and rum, followed by ethyl lactate for samples of rum. Nevertheless, whiskey samples exhibit ethyl lactate at contents lower or at the same order of magnitude of the fatty esters.
Resumo:
In this article, a novel polydimethylsiloxane/activated carbon (PDMS-ACB) material is proposed as a new polymeric phase for stir bar sorptive extraction (SBSE). The PDMS-ACB stir bar, assembled using a simple Teflon (R)/glass capillary mold, demonstrated remarkable stability and resistance to organic solvents for more than 150 extractions. The SBSE bar has a diameter of 2.36 mm and a length of 2.2 cm and is prepared to contain 92 mu L of polymer coating. This new PDMS-ACB bar was evaluated for its ability to determine the quantity of pesticides in sugarcane juice samples by performing liquid desorption (LD) in 200 mu L of ethyl acetate and analyzing the solvent through gas chromatography coupled with mass spectrometry (GC-MS). A fractional factorial design was used to evaluate the main parameters involved in the extraction procedure. Then, a central composite design with a star configuration was used to optimize the significant extraction parameters. The method used demonstrated a limit of quantification (LOQ) of 0.5-40 mu g/L, depending on the analyte detected; the amount of recovery varied from 0.18 to 49.50%, and the intraday precision ranged from 0.072 to 8.40%. The method was used in the analysis of real sugarcane juice samples commercially available in local markets.
Resumo:
An analytical procedure for the separation and quantification of 20 amino acids in cachacas has been developed involving C18 solid phase cleanup, derivatization with o-phthalaldehyde/2-mercaptoethanol, and reverse phase liquid chromatography with fluorescence detection. The detection limit was between 0.0050 (Cys) and 0.25 (Ser) mg L-1, whereas the recovery index varies from 69.5 (Lys) to 100 (Tyr)%. Relative standard deviations vary from 1.39 (Trp) to 13.4 (Glu)% and from 3.08 (Glu) to 13.5 (His) for the repeatability and intermediate precision, respectively. From the quantitative profile of amino acids in 41 cachacas, 5 turns, and 12 whisky samples, the following order of amino acids in significant quantities is observed: Gly = Ser < Cys < Ile < His < Pro = Asp < Asn < Tyr for cachaca; Phe < Glu = Gln = Val = Ala < His = Gly Thr = Arg = Tyr < Asn Ser = Lys = Pro < Cys = Asp for rum; and Ala = Asn < Trp < Gln = His = Met = Ile = Cys < Thr < Asp Leu < Phe = Lys < Ser = Gly = Tyr = Val < Glu = Pro < Arg for whisky samples. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Direct analysis, with minimal sample pretreatment, of antidepressant drugs, fluoxetine, imipramine, desipramine, amitriptyline, and nortriptyline in biofluids was developed with a total run time of 8 min. The setup consists of two HPLC pumps, injection valve, capillary RAM-ADS-C18 pre-column and a capillary analytical C 18 column connected by means of a six-port valve in backflush mode. Detection was performed with ESI-MS/MS and only 1 mu m of sample was injected. Validation was adequately carried out using FLU-d(5) as internal standard. Calibration curves were constructed under a linear range of 1-250 ng mL(-1) in plasma, being the limit of quantification (LOQ), determined as 1 ng mL(-1), for all the analytes. With the described approach it was possible to reach a quantified mass sensitivity of 0.3 pg for each analyte (equivalent to 1.1-1.3 fmol), translating to a lower sample consumption (in the order of 103 less sample than using conventional methods). (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
A column switching LC method is presented for the analysis of fluoxetine (FLU) and norfluoxetine (NFLU) by direct injection of human plasma using a lab-made restricted access media (RAM) column. A RAM-BSA-octadecyl silica (C-18) column (40 min x 4.6 mm, 10 mu m) is evaluated in both backflush and foreflush elution modes and coupled with a C-18 lab-made (50 mm x 4.6 mm, 3 pm) analytical column in order to perform online sample preparation. Direct injection of 100 mu L, of plasma samples is possible with the developed approach. In addition, reduction of sample handling is obtained when compared with traditional liquid-liquid extraction (LLE) and SPE. The total analysis time is around 20 min. A LOQ of 15 ng/mL is achieved in a concentration range of 15-500 ng/mL, allowing the therapeutic drug monitoring of clinical samples. The precision values achieved are lower than 15% for all the evaluated points with adequate recovery and accuracy. Furthermore, no matrix interferences are found in the analysis and the proposed method shows to be an adequate alternative for analysis of FLU in plasma.
Resumo:
The influence of the sample matrix in the CC-electron-capture detection analysis of the pesticides dimethoate, diazinon, chlorothalonil.. parathion methyl and fenitrothion in fruits samples has been studied. Experiments have been carried out where the pesticide responses in standard solutions prepared in selected solvent were compared with their response when present in apple, mango, papaya, banana, pineapple and melon extracts. The presence of matrix effects (MEs) and their extent were shown to be simultaneously influenced by several factors (matrix concentration, matrix type, pesticide concentration, analytical range). Pronounced MEs were observed particularly for dimethoate and diazinon in all matrices tested; in lower concentrations, all pesticides presented significant ME. The other pesticides presented variable ME. Higher ME enhancement was detected at lower pesticide concentration levels of and/or at higher matrix concentration solutions. The ME detected for fenitrothion, in the analytical range evaluated, were dependent on matrix type. For each pesticide, solvent and matrix-matched calibrations were compared for all fruit samples, and it could be concluded that quantitation based on standard solutions prepared in blank matrix extract (matrix-matched calibration) should be used to compensate the MEs and to obtain more accurate results for the pesticides studied.
Resumo:
A new polymeric coating consisting of a dual-phase, polydimethylsiloxane (PDMS) and polypyrrole (PPY) was developed for the stir bar sorptive extraction (SBSE) of antidepressants (mirtazapine, citalopram, paroxetine, duloxetine, fluoxetine and sertraline) from plasma samples, followed by liquid chromatography analysis (SBSE/LC-UV). The extractions were based on both adsorption (PPY) and sorption (PDMS) mechanisms. SBSE variables, such as extraction time, temperature, pH of the matrix, and desorption time were optimized, in order to achieve suitable analytical sensitivity in a short time period. The PDMS/PPY coated stir bar showed high extraction efficiency (sensitivity and selectivity) toward the target analytes. The quantification limits (LOQ) of the SBSE/LC-UV method ranged from 20 ng mL(-1) to 50 ng mL(-1), and the linear range was from LOQ to 500 ng mL(-1), with a determination coefficient higher than 0.99. The inter-day precision of the SBSE/LC-UV method presented a variation coefficient lower than 15%. The efficiency of the SBSE/LC-UV method was proved by analysis of plasma samples from elderly depressed patients. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
A method for the determination of pesticide residues in water and sediment was developed using the QuEChERS method followed by gas chromatography - mass spectrometry. The method was validated in terms of accuracy, specificity, linearity, detection and quantification limits. The recovery percentages obtained for the pesticides in water at different concentrations ranged from 63 to 116%, with relative standard deviations below 12%. The corresponding results from the sediment ranged from 48 to 115% with relative standard deviations below 16%. The limits of detection for the pesticides in water and sediment were below 0.003 mg L(-1) and 0.02 mg kg(-1), respectively.