60 resultados para simulations de Monte-Carlo
Resumo:
Using Monte Carlo simulations we investigate some new aspects of the phase diagram and the behavior of the diffusion coefficient in an associating lattice gas (ALG) model on different regions of the phase diagram. The ALG model combines a two dimensional lattice gas where particles interact through a soft core potential and orientational degrees of freedom. The competition between soft core potential and directional attractive forces results in a high density liquid phase, a low density liquid phase, and a gas phase. Besides anomalies in the behavior of the density with the temperature at constant pressure and of the diffusion coefficient with density at constant temperature are also found. The two liquid phases are separated by a coexistence line that ends in a bicritical point. The low density liquid phase is separated from the gas phase by a coexistence line that ends in tricritical point. The bicritical and tricritical points are linked by a critical lambda-line. The high density liquid phase and the fluid phases are separated by a second critical tau-line. We then investigate how the diffusion coefficient behaves on different regions of the chemical potential-temperature phase diagram. We find that diffusivity undergoes two types of dynamic transitions: a fragile-to-strong transition when the critical lambda-line is crossed by decreasing the temperature at a constant chemical potential; and a strong-to-strong transition when the critical tau-line is crossed by decreasing the temperature at a constant chemical potential.
Resumo:
We present Monte Carlo simulations for a molecular motor system found in virtually all eukaryotic cells, the acto-myosin motor system, composed of a group of organic macromolecules. Cell motors were mapped to an Ising-like model, where the interaction field is transmitted through a tropomyosin polymer chain. The presence of Ca(2+) induces tropomyosin to block or unblock binding sites of the myosin motor leading to its activation or deactivation. We used the Metropolis algorithm to find the transient and the equilibrium states of the acto-myosin system composed of solvent, actin, tropomyosin, troponin, Ca(2+), and myosin-S1 at a given temperature, including the spatial configuration of tropomyosin on the actin filament surface. Our model describes the short- and long-range cooperativity during actin-myosin binding which emerges from the bending stiffness of the tropomyosin complex. We found all transition rates between the states only using the interaction energy of the constituents. The agreement between our model and experimental data also supports the recent theory of flexible tropomyosin.
Resumo:
Rheological properties of adherent cells are essential for their physiological functions, and microrheological measurements on living cells have shown that their viscoelastic responses follow a weak power law over a wide range of time scales. This power law is also influenced by mechanical prestress borne by the cytoskeleton, suggesting that cytoskeletal prestress determines the cell's viscoelasticity, but the biophysical origins of this behavior are largely unknown. We have recently developed a stochastic two-dimensional model of an elastically joined chain that links the power-law rheology to the prestress. Here we use a similar approach to study the creep response of a prestressed three-dimensional elastically jointed chain as a viscoelastic model of semiflexible polymers that comprise the prestressed cytoskeletal lattice. Using a Monte Carlo based algorithm, we show that numerical simulations of the chain's creep behavior closely correspond to the behavior observed experimentally in living cells. The power-law creep behavior results from a finite-speed propagation of free energy from the chain's end points toward the center of the chain in response to an externally applied stretching force. The property that links the power law to the prestress is the chain's stiffening with increasing prestress, which originates from entropic and enthalpic contributions. These results indicate that the essential features of cellular rheology can be explained by the viscoelastic behaviors of individual semiflexible polymers of the cytoskeleton.
Resumo:
We report new magnetization measurements on the spin-gap compound NiCl(2)-4SC(NH(2))(2) at the low-field boundary of the magnetic field-induced ordering. The critical density of the magnetization is analyzed in terms of a Bose-Einstein condensation of bosonic quasiparticles. The analysis of the magnetization at the transition leads to the conclusion for the preservation of the U(1) symmetry, as required for Bose-Einstein condensation. The experimental data are well described by quantum Monte Carlo simulations.
Resumo:
An effective treatment of the intramolecular degrees of freedom is presented for water, where these modes are decoupled from the intermolecular ones, ""adiabatically"" allowing these coordinates to be positioned at their local minimum of the potential energy surface. We perform ab initio Monte Carlo simulations with the configurational energies obtained via density functional theory. We study a water dimer as a prototype system, and even in this simple case the intramolecular relaxations are very important to properly describe properties such as the dipole moment. We show that rigid simulations do not correctly sample the phase space, resulting in an average dipole moment smaller than the one obtained with the adiabatic model, which is closer to the experimental result. (c) 2008 American Institute of Physics.
Resumo:
We investigate a conjecture on the cover times of planar graphs by means of large Monte Carlo simulations. The conjecture states that the cover time tau (G(N)) of a planar graph G(N) of N vertices and maximal degree d is lower bounded by tau (G(N)) >= C(d)N(lnN)(2) with C(d) = (d/4 pi) tan(pi/d), with equality holding for some geometries. We tested this conjecture on the regular honeycomb (d = 3), regular square (d = 4), regular elongated triangular (d = 5), and regular triangular (d = 6) lattices, as well as on the nonregular Union Jack lattice (d(min) = 4, d(max) = 8). Indeed, the Monte Carlo data suggest that the rigorous lower bound may hold as an equality for most of these lattices, with an interesting issue in the case of the Union Jack lattice. The data for the honeycomb lattice, however, violate the bound with the conjectured constant. The empirical probability distribution function of the cover time for the square lattice is also briefly presented, since very little is known about cover time probability distribution functions in general.
Resumo:
We study the structural phase transitions in confined systems of strongly interacting particles. We consider infinite quasi-one-dimensional systems with different pairwise repulsive interactions in the presence of an external confinement following a power law. Within the framework of Landau's theory, we find the necessary conditions to observe continuous transitions and demonstrate that the only allowed continuous transition is between the single-and the double-chain configurations and that it only takes place when the confinement is parabolic. We determine analytically the behavior of the system at the transition point and calculate the critical exponents. Furthermore, we perform Monte Carlo simulations and find a perfect agreement between theory and numerics.
Resumo:
With each directed acyclic graph (this includes some D-dimensional lattices) one can associate some Abelian algebras that we call directed Abelian algebras (DAAs). On each site of the graph one attaches a generator of the algebra. These algebras depend on several parameters and are semisimple. Using any DAA, one can define a family of Hamiltonians which give the continuous time evolution of a stochastic process. The calculation of the spectra and ground-state wave functions (stationary state probability distributions) is an easy algebraic exercise. If one considers D-dimensional lattices and chooses Hamiltonians linear in the generators, in finite-size scaling the Hamiltonian spectrum is gapless with a critical dynamic exponent z=D. One possible application of the DAA is to sandpile models. In the paper we present this application, considering one- and two-dimensional lattices. In the one-dimensional case, when the DAA conserves the number of particles, the avalanches belong to the random walker universality class (critical exponent sigma(tau)=3/2). We study the local density of particles inside large avalanches, showing a depletion of particles at the source of the avalanche and an enrichment at its end. In two dimensions we did extensive Monte-Carlo simulations and found sigma(tau)=1.780 +/- 0.005.
Resumo:
The existence of juxtaposed regions of distinct cultures in spite of the fact that people's beliefs have a tendency to become more similar to each other's as the individuals interact repeatedly is a puzzling phenomenon in the social sciences. Here we study an extreme version of the frequency-dependent bias model of social influence in which an individual adopts the opinion shared by the majority of the members of its extended neighborhood, which includes the individual itself. This is a variant of the majority-vote model in which the individual retains its opinion in case there is a tie among the neighbors' opinions. We assume that the individuals are fixed in the sites of a square lattice of linear size L and that they interact with their nearest neighbors only. Within a mean-field framework, we derive the equations of motion for the density of individuals adopting a particular opinion in the single-site and pair approximations. Although the single-site approximation predicts a single opinion domain that takes over the entire lattice, the pair approximation yields a qualitatively correct picture with the coexistence of different opinion domains and a strong dependence on the initial conditions. Extensive Monte Carlo simulations indicate the existence of a rich distribution of opinion domains or clusters, the number of which grows with L(2) whereas the size of the largest cluster grows with ln L(2). The analysis of the sizes of the opinion domains shows that they obey a power-law distribution for not too large sizes but that they are exponentially distributed in the limit of very large clusters. In addition, similarly to other well-known social influence model-Axelrod's model-we found that these opinion domains are unstable to the effect of a thermal-like noise.
Resumo:
A methodology for rock-excavation structural-reliability analysis that uses Distinct Element Method numerical models is presented. The methodology solves the problem of the conventional numerical models that supply only punctual results and use fixed input parameters, without considering its statistical errors. The analysis of rock-excavation stability must consider uncertainties from geological variability, from uncertainty in the choice of mechanical behaviour hypothesis, and from uncertainties in parameters adopted in numerical model construction. These uncertainties can be analyzed in simple deterministic models, but a new methodology was developed for numerical models with results of several natures. The methodology is based on Monte Carlo simulations and uses principles of Paraconsistent Logic. It will be presented in the analysis of a final slope of a large-dimensioned surface mine.
Resumo:
This paper analyzes the complexity-performance trade-off of several heuristic near-optimum multiuser detection (MuD) approaches applied to the uplink of synchronous single/multiple-input multiple-output multicarrier code division multiple access (S/MIMO MC-CDMA) systems. Genetic algorithm (GA), short term tabu search (STTS) and reactive tabu search (RTS), simulated annealing (SA), particle swarm optimization (PSO), and 1-opt local search (1-LS) heuristic multiuser detection algorithms (Heur-MuDs) are analyzed in details, using a single-objective antenna-diversity-aided optimization approach. Monte- Carlo simulations show that, after convergence, the performances reached by all near-optimum Heur-MuDs are similar. However, the computational complexities may differ substantially, depending on the system operation conditions. Their complexities are carefully analyzed in order to obtain a general complexity-performance framework comparison and to show that unitary Hamming distance search MuD (uH-ds) approaches (1-LS, SA, RTS and STTS) reach the best convergence rates, and among them, the 1-LS-MuD provides the best trade-off between implementation complexity and bit error rate (BER) performance.
Resumo:
The recent claim that the exit probability (EP) of a slightly modified version of the Sznadj model is a continuous function of the initial magnetization is questioned. This result has been obtained analytically and confirmed by Monte Carlo simulations, simultaneously and independently by two different groups (EPL, 82 (2008) 18006; 18007). It stands at odds with an earlier result which yielded a step function for the EP (Europhys. Lett., 70 (2005) 705). The dispute is investigated by proving that the continuous shape of the EP is a direct outcome of a mean-field treatment for the analytical result. As such, it is most likely to be caused by finite-size effects in the simulations. The improbable alternative would be a signature of the irrelevance of fluctuations in this system. Indeed, evidence is provided in support of the stepwise shape as going beyond the mean-field level. These findings yield new insight in the physics of one-dimensional systems with respect to the validity of a true equilibrium state when using solely local update rules. The suitability and the significance to perform numerical simulations in those cases is discussed. To conclude, a great deal of caution is required when applying updates rules to describe any system especially social systems. Copyright (C) EPLA, 2011
Resumo:
The identification, modeling, and analysis of interactions between nodes of neural systems in the human brain have become the aim of interest of many studies in neuroscience. The complex neural network structure and its correlations with brain functions have played a role in all areas of neuroscience, including the comprehension of cognitive and emotional processing. Indeed, understanding how information is stored, retrieved, processed, and transmitted is one of the ultimate challenges in brain research. In this context, in functional neuroimaging, connectivity analysis is a major tool for the exploration and characterization of the information flow between specialized brain regions. In most functional magnetic resonance imaging (fMRI) studies, connectivity analysis is carried out by first selecting regions of interest (ROI) and then calculating an average BOLD time series (across the voxels in each cluster). Some studies have shown that the average may not be a good choice and have suggested, as an alternative, the use of principal component analysis (PCA) to extract the principal eigen-time series from the ROI(s). In this paper, we introduce a novel approach called cluster Granger analysis (CGA) to study connectivity between ROIs. The main aim of this method was to employ multiple eigen-time series in each ROI to avoid temporal information loss during identification of Granger causality. Such information loss is inherent in averaging (e.g., to yield a single ""representative"" time series per ROI). This, in turn, may lead to a lack of power in detecting connections. The proposed approach is based on multivariate statistical analysis and integrates PCA and partial canonical correlation in a framework of Granger causality for clusters (sets) of time series. We also describe an algorithm for statistical significance testing based on bootstrapping. By using Monte Carlo simulations, we show that the proposed approach outperforms conventional Granger causality analysis (i.e., using representative time series extracted by signal averaging or first principal components estimation from ROIs). The usefulness of the CGA approach in real fMRI data is illustrated in an experiment using human faces expressing emotions. With this data set, the proposed approach suggested the presence of significantly more connections between the ROIs than were detected using a single representative time series in each ROI. (c) 2010 Elsevier Inc. All rights reserved.
Resumo:
Molecular epidemiological data concerning the hepatitis B virus (HBV) in Chile are not known completely. Since the HBV genotype F is the most prevalent in the country, the goal of this study was to obtain full HBV genome sequences from patients infected chronically in order to determine their subgenotypes and the occurrence of resistance-associated mutations. Twenty-one serum samples from antiviral drug-naive patients with chronic hepatitis B were subjected to full-length PCR amplification, and both strands of the whole genomes were fully sequenced. Phylogenetic analyses were performed along with reference sequences available from GenBank (n = 290). The sequences were aligned using Clustal X and edited in the SE-AL software. Bayesian phylogenetic analyses were conducted by Markov Chain Monte Carlo simulations (MCMC) for 10 million generations in order to obtain the substitution tree using BEAST. The sequences were also analyzed for the presence of primary drug resistance mutations using CodonCode Aligner Software. The phylogenetic analyses indicated that all sequences were found to be the HBV subgenotype F1b, clustered into four different groups, suggesting that diverse lineages of this subgenotype may be circulating within this population of Chilean patients. J. Med. Virol. 83: 1530-1536, 2011. (C) 2011 Wiley-Liss, Inc.
Resumo:
We studied superclusters of galaxies in a volume-limited sample extracted from the Sloan Digital Sky Survey Data Release 7 and from mock catalogues based on a semi-analytical model of galaxy evolution in the Millennium Simulation. A density field method was applied to a sample of galaxies brighter than M(r) = -21+5 log h(100) to identify superclusters, taking into account selection and boundary effects. In order to evaluate the influence of the threshold density, we have chosen two thresholds: the first maximizes the number of objects (D1) and the second constrains the maximum supercluster size to similar to 120 h(-1) Mpc (D2). We have performed a morphological analysis, using Minkowski Functionals, based on a parameter, which increases monotonically from filaments to pancakes. An anticorrelation was found between supercluster richness (and total luminosity or size) and the morphological parameter, indicating that filamentary structures tend to be richer, larger and more luminous than pancakes in both observed and mock catalogues. We have also used the mock samples to compare supercluster morphologies identified in position and velocity spaces, concluding that our morphological classification is not biased by the peculiar velocities. Monte Carlo simulations designed to investigate the reliability of our results with respect to random fluctuations show that these results are robust. Our analysis indicates that filaments and pancakes present different luminosity and size distributions.