120 resultados para separation and preconcentration
Resumo:
This paper describes the development and application of an RP HPLC method using a C(18) monolithic stationary phase for the separation and quantification of extra- and intracellular amino acids in a batch cultivation of the marine alga Tetraselmis gracilis. Fluorimetric detection was made after separation of the o-phthaldialdehyde 2-mercaptoethanol (OPA-2MCE) derivatives using a binary gradient elution. Separation of 19 amino acids was achieved with resolution >1.5 in about 39 min at a flow rate of 1.5 mL/min. RSD of analyses in seawater medium ranged from 0.36% for Orn (0.50 mu mol/L) to 12% for Ile (0.10 mu mol/L). The main constituents of the intracellular dissolved free amino acids (DFAAs) in the exponential growth phase were arginine (Arg), asparagine (Asn), alanine (Ala), aspartic acid (Asp), glutamic acid (Glu), serine (Ser), glycine (Gly), glutamine (Gln), and leucine (Leu). The major amino acids excreted to the media were valine (Val), Ala, Ser, and Gly. The monolithic phase facilitates the analysis by shortening the separation time and saving solvents and instrumentation costs (indeed conventional HPLC instrumentation can be used, running at lower pressures than those ones used with packed particle columns).
Resumo:
In this work Cu and Fe bioavailability in cashew nuts was evaluated using in vitro method. Extractions with simulated gastric and intestinal fluids and dialysis procedures were applied for this purpose. The proteins separation and quantification were performed by size exclusion chromatography (SEC) coupled on-line to ultra-violet (UV) and off-line to simultaneous multielement atomic absorption spectrometry (SIMAAS). The SEC-UV and SIMAAS profiles of the protein fractions obtained by alkaline extraction (NaOH) and precipitation with HCl indicated the presence of high and low molecular weight species in the range between >75 kDa and 9.3 kDa. Almost 83% of Cu and 78% of Fe were extracted during cashew nut digestion and 90% of both elements were dialyzed. With these results it is possible to assume that 75% of Cu and 70% of Fe present in cashew nut could be bioavailable. The SEC-UV and SIMAAS chromatographic profiles obtained after in vitro gastrointestinal digestion reveal that Cu and Fe not dialyzed can be associated to a compound of 9.2 kDa. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The ozonolysis of 2,4-xylidine (2,4-dimethyl-aniline) in acidic aqueous solution was investigated by determining the major reaction products and their evolution as a function of the reaction time and their dependence on the pH of the reaction system. 2,4-Dimethyl-nitrobenzene and 2,4-dimethyl-phenol were found to be primary reaction products; their formation might be explained by electron transfer and substitution reactions. 2,4-Dimethyl-phenol was further oxidized yielding 2,4-dimethyl- and/or 4,6-dimethyl-resorcinol by electrophilic addition of HO(center dot) radicals. The best fitting phenomenological kinetic model and the good convergence of calculated and experimentally determined rate constants imply two additional competitive pathways of substrate oxidation: (i) electrophilic addition of HO(center dot) radicals and fast subsequent substitution would also yield the resorcinol derivatives. (ii) Substrate and isolated products are thought to be oxidized by hydrogen abstraction at the benzylic sites, but the corresponding products (alcohols, aldehydes, and carboxylic acids) could not be identified. Fe(II) was added to probe for the presence of H(2)O(2), but had no or only a minor effect on the kinetics of the ozonolysis. (c) 2009 Elsevier B.V. All rights reserved.
Resumo:
This paper describes the development of a sequential injection chromatography (SIC) procedure for separation and quantification of the herbicides simazine, atrazine, and propazine exploring the low backpressure of a 2.5 cm long monolithic C(18) column. The separation of the three compounds was achieved in less than 90 s with resolution > 1.5 using a mobile phase composed by ACN/1.25 mmol/L acetate buffer (pH 4.5) at the volumetric ratio of 35:65 and flow rate of 40 mu L/s. Detection was made at 223 nm using a flow cell with 40 mm of optical path length. The LOD was 10 mu g/L for the three triazines and the quantification limits were of 30 mu g/L for simazine and propazine and 40 mu g/L for atrazine. The sampling frequency is 27 samples per hour, consuming 1.1 mL of ACN per analysis. The proposed methodology was applied to spiked water samples and no statistically significant differences were observed in comparison to a conventional HPLC-UV method. The major metabolites of atrazine and other herbicides did not interfere in the analysis, being eluted from the column either together with the unretained peak, or at retention times well-resolved from the studied compounds.
Resumo:
An analytical procedure for the separation and quantification of ethyl acetate, ethyl butyrate, ethyl hexanoate, ethyl lactate, ethyl octanoate, ethyl nonanoate, ethyl decanoate, isoamyl octanoate, and ethyl laurate in cachaca, rum, and whisky by direct injection gas chromatography-mass spectrometry was developed. The analytical method is simple, selective, and appropriated for the determination of esters in distilled spirits. The limit of detection ranged from 29 (ethyl hexanoate) to 530 (ethyl acetate) mu g L-1, whereas the standard deviation for repeatability was between 0.774% (ethyl hexanoate) and 5.05% (isoamyl octanoate). Relative standard deviation values for accuracy vary from 90.3 to 98.5% for ethyl butyrate and ethyl acetate, respectively. Ethyl acetate was shown to be the major ester in cachaca (median content of 22.6 mg 100 mL(-1) anhydrous alcohol), followed by ethyl lactate (median content of 8.32 mg 100 mL(-1) anhydrous alcohol). Cachaca produced in copper and hybrid alembic present a higher content of ethyl acetate and ethyl lactate than those produced in a stainless-steel column, whereas cachaca produced by distillation in a stainless-steel column present a higher content of ethyl octanoate, ethyl decanoate, and ethyl laurate. As expected, ethyl acetate is the major ester in whiskey and rum, followed by ethyl lactate for samples of rum. Nevertheless, whiskey samples exhibit ethyl lactate at contents lower or at the same order of magnitude of the fatty esters.
Resumo:
An analytical procedure for the separation and quantification of 20 amino acids in cachacas has been developed involving C18 solid phase cleanup, derivatization with o-phthalaldehyde/2-mercaptoethanol, and reverse phase liquid chromatography with fluorescence detection. The detection limit was between 0.0050 (Cys) and 0.25 (Ser) mg L-1, whereas the recovery index varies from 69.5 (Lys) to 100 (Tyr)%. Relative standard deviations vary from 1.39 (Trp) to 13.4 (Glu)% and from 3.08 (Glu) to 13.5 (His) for the repeatability and intermediate precision, respectively. From the quantitative profile of amino acids in 41 cachacas, 5 turns, and 12 whisky samples, the following order of amino acids in significant quantities is observed: Gly = Ser < Cys < Ile < His < Pro = Asp < Asn < Tyr for cachaca; Phe < Glu = Gln = Val = Ala < His = Gly Thr = Arg = Tyr < Asn Ser = Lys = Pro < Cys = Asp for rum; and Ala = Asn < Trp < Gln = His = Met = Ile = Cys < Thr < Asp Leu < Phe = Lys < Ser = Gly = Tyr = Val < Glu = Pro < Arg for whisky samples. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
PURPOSE: Dental fusion is defined as the union of two dental germs at some stage of their development. The aim of this article is to report the endodontic treatment of two clinical cases of dental fusion. CASE DESCRIPTION: In the first case, the patient was referred by an orthodontist for endodontic treatment of tooth 12, which was fused to 13. Surgical separation and later replacement of the involved elements in the dental arch was indicated. In the second case, the patient sought dental attendance due to spontaneous pain. In the radiographic exam, gemination in tooth 11 and fusion of 21 with a supernumerary tooth was observed. The fused teeth were endodontically treated, and patients were referred to other dental specialties to reestablish esthetics and function. CONCLUSION: The dentist must be able to diagnose, differentiate and treat these dental anomalies adequately, with the goal of maintaining patients' oral health.
Resumo:
A method using ultrasonication extraction for the determination of 17 polycyclic aromatic hydrocarbons (PAHs), selected by the USEPA and NIOSH as "consent decree" priority pollutants, in soil by High Performance Liquid Chromatography (HPLC) was studied. Separation and detection were completed in 20 min with a C18 columm, acetonitrile-water gradient elution and ultraviolet absorption and fluorescence detections. The detection limits, for a 10 µL of solution injection, were less than 9,917 ng/g in UV detection and less than 1,866 ng/g in fluorescence detection. Several organic solvents were tested for extraction of the 17 PAHs from soils. Acetone was the best solvent among the three solvents tested, and the order of the extraction efficiencies was: acetone>methanol>acetonitrile. Ultrasonication using acetone as solvent extraction was used to evaluate the biodegradation of those compounds in contaminated soil during a vermicomposting process.
Resumo:
Results obtained in a pilot-scale unit designed for COD removal and p-TBC (p-tert-butylcatechol) recovery from a butadiene washing stream (pH 14, 200,000 mg COD L-1, highly toxic) at a petrochemical industry are presented. By adding H3PO4, phase separation is achieved and p-TBC is successfully recovered (88 g L-1 of washing stream). Information (time for phase separation and organic phase characterization) was gathered for designing a future industrial unit. The estimated heat generation rate was 990 kJ min-1 and 15 min were enough to promote phase separation for a liquid column of approximately 1.15 m.
Resumo:
The release of xylose reductase (XR) from Candida mogii by cell disruption in a glass beads mill was studied using an experimental design. Statistical analysis of the results indicated that XR volumetric activity increases by using lower glass beads diameter and cell concentration, and by increasing the number of agitation pulses. Based on results attained in experimental design, assays were carried out aiming at the maximization of XR release. Under optimized conditions (300 mu m glass beads, 45 g/l of cell concentration and 50 pulses), the XR volumetric activity reach 0.683 U/ml. Disruption with glass beads showed to be the most efficient method for XR release when compared to sonication process. The highest specific activity (0.175 U/mg of protein) was found in extracts obtained by suspension freezing and thawing, which suggests that this method can be used as a selective process of cell disruption for XR release. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
Purpose - The purpose of this paper is to identify the key elements of a new rapid prototyping process, which involves layer-by-layer deposition of liquid-state material and at the same time using an ultraviolet line source to cure the deposited material. This paper reports studies about the behaviour of filaments, deposition accuracy, filaments interaction and functional feasibility of system. Additionally, the author describes the process which has been proposed, the equipment that has been used for these studies and the material which was developed in this application. Design/methodology/approach - The research has been separated into three study areas in accordance with their goals. In the first, both the behaviour of filament and deposition accuracy was studied. The design of the experiment is described with focus on four response factors (bead width, filament quality, deposition accuracy and deposition continuity) along with function of three control factors (deposition height, deposition velocity and extrusion velocity). The author also studied the interaction between filaments as a function of bead centre distance. In addition, two test samples were prepared to serve as a proof of the methodology and to verify the functional feasibility of the process which has been studied. Findings - The results show that the proposed process is functionally feasible, and that it is possible to identify the main effects of control factors over response factors. That analysis is used to predict the condition of process as a function of the parameters which control the process. Also identified were distances of centre beads which result in a specific behaviour. The types of interaction between filaments were analysed and sorted into: union, separation and indeterminate. At the end, the functional feasibility of process was proved whereby two test parts could be built. Originality/value - This paper proposes a new rapid prototyping process and also presents test studies related to this proposition. The author has focused on the filament behaviour, deposition accuracy, interaction between filaments and studied the functional feasibility of process to provide new information about this process, which at the same time is useful to the development of other rapid prototyping processes.
Resumo:
In biotechnology, endotoxin (LPS) removal from recombinant proteins is a critical and challenging step in the preparation of injectable therapeutics, as endotoxin is a natural component of bacterial expression systems widely used to manufacture therapeutic proteins. The viability of large-scale industrial production of recombinant biomolecules of pharmaceutical interest significantly depends on the separation and purification techniques used. The aim of this work was to evaluate the use of aqueous two-phase micellar system (ATPMS) for endotoxin removal from preparations containing recombinant proteins of pharmaceutical interest, such as green fluorescent protein (GFPuv). Partition assays were carried out initially using pure LPS, and afterwards in the presence of E. coli cell lysate. The ATPMS technology proved to be effective in GFPuv recovery, preferentially into the micelle-poor phase (K(GFPuv) < 1.00), and LPS removal into the micelle-rich phase (%REM(LPS) > 98.00%). Therefore, this system can be exploited as the first step for purification in biotechnology processes for removal of higher LPS concentrations. (C) 2010 American Institute of Chemical Engineers Biotechnol. Prog., 26: 1644-1653, 2010
Resumo:
P>Pineapple pulp was homogenised at different pressures, and its stability investigated by way of flow curves, particle size distribution, morphology, cloudiness and sedimentation. The particle size of the homogenised pulp ranged from 400 to 100 mu m for homogenisation pressures of between 0 and 700 bar. The pineapple pulp showed shear thinning behaviour with increasing flow index (n) after processing at higher pressures. In addition, the pulps with smaller particles showed less serum cloudiness, even though the sedimentation tests showed the highest stability for pulp homogenised between 200 and 300 bar. Above 400 bar, the pulp showed phase separation and higher sedimentation indexes, similar to that observed for the untreated samples, which was attributed to the formation of aggregates because of interparticle attraction.
Resumo:
The traditional reduction methods to represent the fusion cross sections of different systems are flawed when attempting to completely eliminate the geometrical aspects, such as the heights and radii of the barriers, and the static effects associated with the excess neutrons or protons in weakly bound nuclei. We remedy this by introducing a new dimensionless universal function, which allows the separation and disentanglement of the static and dynamic aspects of the breakup coupling effects connected with the excess nucleons. Applying this new reduction procedure to fusion data of several weakly bound systems, we find a systematic suppression of complete fusion above the Coulomb barrier and enhancement below it. Different behaviors are found for the total fusion cross sections. They are appreciably suppressed in collisions of neutron-halo nuclei, while they are practically not affected by the breakup coupling in cases of stable weakly bound nuclei. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The concept of sequential injection chromatography (SIC) was exploited to automate the fluorimetric determination of amino acids after pre-column derivatization with ophthaldialdehyde (OPA) in presence of 2-mercaptoethanol (2MCE) using a reverse phase monolithic C(18) stationary phase. The method is low-priced and based on five steps of isocratic elutions. The first step employs the mixture methanol: tetrahydrofuran: 10 mmol L(-1) phosphate buffer (pH 7.2) at the volumetric ratio of 8:1:91; the other steps use methanol: 10 mmol L-1 phosphate buffer (pH 7.2) at volumetric ratios of 20:80, 35:65, SO:SO and 65:35. At a flow rate of 10 mu L s(-1) a 25 mm long-column was able to separate aspartic acid (Asp), glutamic acid (Glu), asparagine (Asn), serine (Ser), glutamine (Gln), glycine (Gly), threonine (Thr), citruline (Ctr), arginine (Arg), alanine (Ala), tyrosine (Tyr), phenylalanine (Phe), ornithine (Orn) and lysine (Lys) with resolution >1.2 as well as methionine (Met) and valine (Val) with resolution of 0.6. Under these conditions isoleucine (Ile) and leucine (Leu) co-eluted. The entire cycle of amino acids derivatization, chromatographic separation and column conditioning at the end of separation lasted 25 min. At a flow rate of 40 mu L s(-1) such time was reduced to 10 min at the cost of resolution worsening for the pairs Ctr/Arg and Orn/Lys. The detection limits varied from 0.092 mu mol L(-1) for Tyr to 0.51 mu mol L(-1) for Orn. The method was successfully applied to the determination of intracellular free amino acids in the green alga Tetraselmis gracilis during a period of seven days of cultivation. Samples spiked with known amounts of amino acids resulted in recoveries between 94 and 112%. (C) 2008 Elsevier B.V. All rights reserved.