33 resultados para producción de banana
Resumo:
Unripe banana flour can be an alternative to minimize post-harvest loss and to increase the aggregate value of banana fruit. Flour from unripe banana is rich in phytosterols and resistant starch, being proposed as health food. Flours from unripe banana peel and pulp were evaluated on their composition, phytosterols content, thermal and rheological properties, and pasting profiles. High amounts of beta-sitosterol, campesterol, and stigmasterol were found in flour from banana peel. These samples showed lower viscosity values of pasting profiles, lower energy enthalpy on gelatinization, and higher temperature of gelatinization than those ones from pulp. Anti-oxidant treatment of fruits with citric acid does not change pasting profiles of flours from pulp, but resulted in slight increase in viscosity, suggesting that structure of starch could be modified by acidification.
Resumo:
Banana flour obtained from unripe banana (Musa acuminata, var. Nanico) under specific drying conditions was evaluated regarding its chemical composition and nutritional value. Results are expressed in dry weight (dw). The unripe banana flour (UBF) presented a high amount of total dietary fiber (DF) (56.24 g/100 g), which consisted of resistant starch (RS) (48.99 g/100 g), fructans (0.05 g/100 g) and DF without RS or fructans (7.2 g/100 g). The contents of available starch (AS) (27.78 g/100 g) and soluble sugars (1.81 g/100 g) were low. The main phytosterols found were campesterol (4.1 mg/100 g), stigmasterol (2.5 mg/100 g) and beta-sitosterol (6.2 mg/100 g). The total polyphenol content was 50.65 mg GAE/100 g. Antioxidant activity, by the FRAP and ORAC methods, was moderated, being 358.67 and 261.00 mu mol of Trolox equivalent/100 g, respectively. The content of Zn, Ca and Fe and mineral dialyzability were low. The procedure used to obtain UBF resulted in the recovery of undamaged starch granules and in a low-energy product (597 kJ/100 g).
Resumo:
The objective of this research was to verify the effect of drying conditions on thermal properties and resistant starch content of green banana flour (Musa cavendishii). The green banana flour is a complex-carbohydrates source, mainly of resistant starch, and quantifying its gelatinization is important to understand how it affects food processing and the functional properties of the flour. The green banana flour was obtained by drying unripe peeled bananas (first stage of ripening) in a dryer tunnel at 52 degrees C, 55 degrees C and 58 degrees C and air velocity at 0.6 m s(-1), 1.0 m s(-1) and 1.4 m s(-1). The results obtained from differential scanning calorimetry, (DSC) curves show a single endothermic transition and a flow of maximum heating at peak temperatures from (67.95 +/- 0.31)degrees C to (68.63 +/- 0.28) degrees C. ANOVA shows that only drying temperature influenced significantly (P < 0.05) the gelatinization peak temperature (Tp). Gelatinization enthalpy (Delta H) varied from 9.04 J g(-1) to 11.63 J g(-1) and no significant difference was observed for either temperature or air velocity. The resistant starch content of the flour produced varied from (40.9 +/- 0.4) g/100 g to (58.5 +/- 5.4) g/100 g, on dry basis (d. b.), and was influenced by the combination of drying conditions: flour produced at 55 degrees C/1.4 m s(-1) and 55 degrees C/1.0 m s(-1) presented higher content of resistant starch. (c) 2009 Elsevier Ltd. All rights reserved
Resumo:
Fruits represent a rich source of soluble and insoluble fibre, and the pectin is the most common and known soluble fraction from the cell wall solubilization occurring during fruit ripening. Banana fruit, for example, is one of the most consumed fruits in the world, but its non-starch polysaccharide composition is almost unknown. Despite few works have been carried out about the enzymes concerning cell wall loosening focusing banana ripening, there is no knowledge about the composition of the banana cell wall. Moreover, there is no information about the influence of the cultivar in that composition. Nanicao and Mysore cultivars were chosen for this work because of their differential accumulation of both starch during development and amounts of total fibre in the ripe fruit. Nanicao and Mysore had their fibres subfractioned and their composition analysed. Results showed that the cultivars are distinct not only in terms of starch and soluble sugars accumulation, but also in non-starch polysaccharides amounts and composition. Non-starch polysaccharides are similar in total amounts in both banana cultivars (similar to 3.5), but substantially different in the content of CDTA and NaOH-4M soluble fractions and also in the molecular mass distribution of WSP and CDTA. Nanicao has more calcium-linked pectin than Mysore, which in turn is richer in hemicellulose-like polysaccharides. Both cultivars likewise cereals polysaccharides seem to be composed of galacturonans and arabinoxylans.(c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
This work aimed to study the in vitro colonic fermentation profile of unavailable carbohydrates of two different kinds of unripe banana flour and to evaluate their postprandial glycemic responses. The unripe banana mass (UBM), obtained from the cooked pulp of unripe bananas (Musa acuminata, Nanico variety), and the unripe banana starch (UBS), obtained from isolated starch of unripe banana, plantain type (Musa paradisiaca) in natura, were studied. The fermentability of the flours was evaluated by different parameters, using rat inoculum, as well as the glycemic response produced after the ingestion by healthy volunteers. The flours presented high concentration of unavailable carbohydrates, which varied in the content of resistant starch, dietary fiber and indigestible fraction (IF). The in vitro colonic fermentation of the flours was high, 98% for the UBS and 75% for the UBM when expressed by the total amount of SCFA such as acetate, butyrate and propionate in relation to lactulose. The increase in the area under the glycemic curve after ingestion of the flours was 90% lower for the UBS and 40% lower for the UBM than the increase produced after bread intake. These characteristics highlight the potential of UBM and UBS as functional ingredients. However, in vivo studies are necessary in order to evaluate the possible benefic effects of the fermentation on intestinal health.
Resumo:
The postharvest development of crown rot of bananas depends notably on the fruit susceptibility to this disease at harvest. It has been shown that fruit susceptibility to crown rot is variable and it was suggested that this depends on environmental preharvest factors. However, little is known about the preharvest factors influencing this susceptibility. The aim of this work was to evaluate the extent to which fruit filling characteristics during growth and the fruit development stage influence the banana susceptibility to crown rot. This involved evaluating the influence of (a) the fruit position at different levels of the banana bunch (hands) and (b) changing the source-sink ratio (So-Si ratio), on the fruit susceptibility to crown rot. The fruit susceptibility was determined by measuring the internal necrotic surface (INS) after artificial inoculation of Colletotrichum musae. A linear correlation (r = -0.95) was found between the hand position on the bunch and the INS. The So-Si ratio was found to influence the pomological characteristics of the fruits and their susceptibility to crown rot. Fruits of bunches from which six hands were removed (two hands remaining on the bunch) proved to be significantly less susceptible to crown rot (INS = 138.3 mm 2) than those from bunches with eight hands (INS = 237.9 mm 2). The banana susceptibility to crown rot is thus likely to be influenced by the fruit development stage and filling characteristics. The present results highlight the importance of standardising hand sampling on a bunch when testing fruit susceptibility to crown rot. They also show that hand removal in the field has advantages in the context of integrated pest management, making it possible to reduce fruit susceptibility to crown rot while increasing fruit size.
Resumo:
Few molecular studies have been devoted to the finger drop process that occurs during banana fruit ripening. Recent studies revealed the involvement of changes in the properties of cell wall polysaccharides in the pedicel rupture area. In this study, the expression of cell-wall modifying genes was monitored in peel tissue during post-harvest ripening of Cavendish banana fruit, at median area (control zone) and compared with that in the pedicel rupture area (drop zone). To this end, three pectin methylesterase (PME) and seven xyloglucan endotransglycosylase/hydrolase (XTH) genes were isolated. The accumulation of their mRNAs and those of polygalaturonase, expansin, and pectate lyase genes already isolated from banana were examined. During post-harvest ripening, transcripts of all genes were detected in both zones, but accumulated differentially. MaPME1, MaPG1, and MaXTH4 mRNA levels did not change in either zone. Levels of MaPME3 and MaPG3 mRNAs increased greatly only in the control zone and at the late ripening stages. For other genes, the main molecular changes occurred 1-4 d after ripening induction. MaPME2, MaPEL1, MaPEL2, MaPG4, MaXTH6, MaXTH8, MaXTH9, MaEXP1, MaEXP4, and MaEXP5 accumulated highly in the drop zone, contrary to MaXTH3 and MaXTH5, and MaEXP2 throughout ripening. For MaPG2, MaXET1, and MaXET2 genes, high accumulation in the drop zone was transient. The transcriptional data obtained from all genes examined suggested that finger drop and peel softening involved similar mechanisms. These findings also led to the proposal of a sequence of molecular events leading to finger drop and to suggest some candidates.
Resumo:
Application of the thermal sum concept was developed to determine the optimal harvesting stage of new banana hybrids to be grown for export. It was tested on two triploid hybrid bananas, FlhorBan 916 (F916) and FlhorBan 918 (F918), created by CIRAD`s banana breeding programme, using two different approaches. The first approach was used with F916 and involved calculating the base temperature of bunches sampled at two sites at the ripening stage, and then determining the thermal sum at which the stage of maturity would be identical to that of the control Cavendish export banana. The second approach was used to assess the harvest stage of F918 and involved calculating the two thermal parameters directly, but using more plants and a longer period. Using the linear regression model, the estimated thermal parameters were a thermal sum of 680 degree-days (dd) at a base temperature of 17.0 degrees C for cv. F916, and 970 dd at 13.9 degrees C for cv. F918. This easy-to-use method provides quick and reliable calculations of the two thermal parameters required at a specific harvesting stage for a given banana variety in tropical climate conditions. Determining these two values is an essential step for gaining insight into the agronomic features of a new variety and its potential for export. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Ethylene signal transduction initiates with ethylene binding at receptor proteins and terminates in a transcription cascade involving the EIN3/EIL transcription factors. Here, we have isolated four cDNAs homologs of the Arabidopsis EIN3/EIN3-like gene, MA-EILs (Musa acuminata ethylene insensitive 3-like) from banana fruit. Sequence comparison with other banana EIL gene already registered in the database led us to conclude that, at this day, at least five different genes namely MA-EIL1, MA-EIL2/AB266318, MA-EIL3/AB266319, MA-EIL4/AB266320 and AB266321 exist in banana. Phylogenetic analyses included all banana EIL genes within a same cluster consisting of rice OsEILs, a monocotyledonous plant as banana. However, MA-EIL1, MA-EIL2/AB266318, MA-EIL4/AB266320 and AB266321 on one side, and MA-EIL3/AB266319 on the other side, belong to two distant subclusters. MA-EIL mRNAs were detected in all examined banana tissues but at lower level in peel than in pulp. According to tissues, MA-EIL genes were differentially regulated by ripening and ethylene in mature green fruit and wounding in old and young leaves. MA-EIL2/AB266318 was the unique ripening- and ethylene-induced gene; MA-EIL1, MA-EIL4/Ab266320 and AB266321 genes were downregulated, while MA-EIL3/AB266319 presented an unusual pattern of expression. Interestingly, a marked change was observed mainly in MA-EIL1 and MA-EIL3/Ab266319 mRNA accumulation concomitantly with changes in ethylene responsiveness of fruit. Upon wounding, the main effect was observed in MA-EIL4/AB266320 and AB266321 mRNA levels, which presented a markedly increase in both young and old leaves, respectively. Data presented in this study suggest the importance of a transcriptionally step control in the regulation of EIL genes during banana fruit ripening.
Resumo:
Storage at low temperature is the most frequently used method to extend the shelf life of banana fruit, and is fundamental for extended storage and transport over long distances. However, storage and transport conditions must be carefully controlled because of the high susceptibility of many commercial cultivars to chilling injury. The physiological behavior of bananas at low temperatures has been studied to identify possible mechanisms of resistance to chilling injury. The aim of this work was to evaluate differences in the starch-to-sucrose metabolism of a less tolerant and susceptible (Musa acuminata, AAA cv. Nanicao) and a more tolerant (M. acuminata x Musa balbusiana, AAB, cv. Prata) banana cultivar to chilling injury. Fruits of these cultivars were stored in chambers at 13 degrees C for 15 d, at which point they were transferred to 19 degrees C, where they were left until complete ripening. The low temperature induced significant changes in the metabolism of starch and sucrose in comparison to fruit ripened only at 19 degrees C. The sucrose accumulation was slightly higher in cv. Prata, and different patterns of starch degradation, sucrose synthesis, activity and protein levels of the alpha-and beta-amylases, starch phosphorylase, sucrose synthase and sucrose phosphate synthase were detected between the cultivars. Our results suggest that starch-to-sucrose metabolism is likely part of the mechanism for cold acclimation in banana fruit, and the cultivar-dependent differences contribute to their ability to tolerate cold temperatures. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Banana fruits are important foods, but there have been very few studies evaluating the phenolics associated with their cell walls. In the present study, (+) catechin, gallocatechin, and (-) epicatechin, as well as condensed tannins, were detected in the soluble extract of the fruit pulp; neither soluble anthocyanidins nor anthocyanins were present. In the soluble cell wall fraction, two hydroxycinnamic acid derivatives were predominant, whereas in the insoluble cell wall fraction, the anthocyanidin delphinidin, which is reported in banana cell walls for the first time, was predominant. Cell wall fractions showed remarkable antioxidant capacity, especially after acid and enzymatic hydrolysis, which was correlated with the total phenolic content released after the hydrolysis of the water-insoluble polymer, but not for the posthydrolysis water-soluble polymer. The acid hydrolysis released various monosaccharides, whereas enzymatic hydrolysis released one peak of oligosaccharides. These results indicate that banana cell walls could be a suitable source of natural antioxidants and that they could be bioaccessible in the human gut.
Resumo:
This work reports the first ultrastructural investigation into the degradation process that starch granules isolated from bananas (cv. Nanicao) undergo during ripening. Starch granules from green bananas had a smooth surface, while granules from ripe bananas were more elongated with parallel striations, as revealed by CSLM and SEM. AFM images revealed that the first layer covering the granule surface is composed of a hard material and, as degradation proceeds, hard and soft regions seem to be repeated at regular intervals. WAXD patterns of banana starches were C-type, and the crystalline index was reduced during ripening. The B-/A-type ratio was increased, indicating the preferential degradation of the A-type allomorph. The branch-chain length distribution showed predominantly short chains of amylopectin (A and B1-chain). The fa/fb ratio was reduced during degradation, while amylose content was increased. The results allowed a detailed understanding of the changes that starch granules undergo during banana ripening. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The fruit of banana undergoes several important physico-chemical changes during ripening. Analysis of gene expression would permit identification of important genes and regulatory elements involved in this process. Therefore, transcript profiling of preclimacteric and climacteric fruit was performed using differential display and Suppression subtractive hybridization. Our analyses resulted in the isolation of 12 differentially expressed cDNAs, which were confirmed by dot-blots and northern blots. Among the sequences identified were sequences homologous to plant aquaporins, adenine nucleotide translocator, immunophilin, legumin-like proteins, deoxyguanosine kinase and omega-3 fatty acid desaturase. Some of these cDNAs correspond to newly isolated genes involved in changes related to the respiratory climacteric, or stress-defense responses. Functional characterization of ripening-associated genes could provide information useful in controlling biochemical pathways that would have an impact on banana quality and shelf life. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Levels of sucrose and total fructool igosaccha rides (FOS) were quantified in different phases of banana `Prata` ripening during storage at ambient (similar to 19 degrees C) and low (similar to 10 degrees C) temperature. Total FOS levels were detected in the first days after harvest, whereas 1-kestose remained undetectable until the sucrose levels reached approximately 200 mg/g (dry weight) in both groups. Sucrose levels increased slowly but constantly at low temperature, but they elevated rapidly when the temperature was raised to 19 degrees C. Total FOS and sucrose levels were higher in bananas stored at low temperature than in the control group. In both samples, total FOS levels were higher than those of 1-kestose. The carbohydrate profiles obtained by HPLC and TLC suggest the presence of neokestose, 6-kestose, and bifurcose. The enzymes putatively involved in banana fructosyltransferase activity were also evaluated. Results obtained indicate that the banana enzyme responsible for the synthesis of FOS by transfructosylation is an invertase rather than a sucrose-sucrosyl transferase-like enzyme.
Resumo:
Different banana cultivars were used to investigate the influences of starch granule structure and hydrolases on degradation. The highest degrees of starch degradation were observed in dessert bananas during ripening. Scanning electron microscopy images revealed smooth granule surface in the green stage in all cultivars, except for Mysore. The small and round granules were preferentially degraded in all of the cultivars. Terra demonstrated a higher degree of crystallinity and a short amylopectin chain length distribution, resulting in high starch content in the ripe stage. Amylose content and the crystallinity index were more strongly correlated than the distribution of amylopectin branch chain lengths in banana starches. alpha- and beta-amylase activities were found in both forms, soluble in the pulp and associated with the starch granule. Starch-phosphorylase was not found in Mysore. On the basis of the profile of alpha-amylase in vitro digestion and the structural characteristics, it could be concluded that the starch of plantains has an arrangement of granules more resistant to enzymes than the starch of dessert bananas.