82 resultados para pp cross-section
Resumo:
The ground state thermal neutron cross section and the resonance integral for the (165)Ho(n, gamma)(166)Ho reaction in thermal and 1/E regions, respectively, of a thermal reactor neutron spectrum have been measured experimentally by activation technique. The reaction product, (166)Ho in the ground state, is gaining considerable importance as a therapeutic radionuclide and precisely measured data of the reaction are of significance from the fundamental point of view as well as for application. In this work, the spectrographically pure holmium oxide (Ho(2)O(3)) powder samples were irradiated with and without cadmium covers at the IEA-RI reactor (IPEN, Sao Paulo), Brazil. The deviation of the neutron spectrum shape from 1/E law was measured by co-irradiating Co, Zn, Zr and Au activation detectors with thermal and epithermal neutrons followed by regression and iterative procedures. The magnitudes of the discrepancies that can occur in measurements made with the ideal 1/E law considerations in the epithermal range were studied. The measured thermal neutron cross section at the Maxwellian averaged thermal energy of 0.0253 eV is 59.0 +/- 2.1 b and for the resonance integral 657 +/- 36b. The results are measured with good precision and indicated a consistency trend to resolve the discrepant status of the literature data. The results are compared with the values in main libraries such as ENDF/B-VII, JEF-2.2 and JENDL-3.2, and with other measurements in the literature.
Resumo:
In this work we propose a simple model for the total proton-air cross section, which is an improvement of the minijet model with the inclusion of a window in the p(T)-spectrum associated to the saturation physics. Our approach introduces a natural cutoff for the perturbative calculations which modifies the energy behavior of this component. The saturated component is calculated with a dipole model. The results are compared with experimental cross sections measured in cosmic ray experiments.
Resumo:
We propose a simple model for the total pp/p (p) over bar cross-section, which is a generalization of the minijet model with the inclusion of a window in the pT-spectrum associated to the saturation physics. Our model implies a natural cutoff for the perturbative calculations which modifies the energy behavior of this component, so that it satisfies the Froissart bound. Including the saturated component, we obtain a satisfactory description of the very high energy experimental data.
Resumo:
In this work we present the J/psi measurement in p+p collisions within the STAR collaboration Quarkonium program. This measurements aim to be the baseline measurement of a more comprehensive systematic study of quarkonium states production in order to understand their in medium modification. Here we report the total cross section and rho(T) distribution, and find them to be consistent with pQCD CEM predictions as well as to previous measurements at the same center-of-mass energy.
Resumo:
Heavy quark production has been very well studied over the last years both theoretically and experimentally. Theory has been used to study heavy quark production in ep collisions at HERA, in pp collisions at Tevatron and RHIC, in pA and dA collisions at RHIC, and in AA collisions at CERN-SPS and RHIC. However, to the best of our knowledge, heavy quark production in eA has received almost no attention. With the possible construction of a high energy electron-ion collider, updated estimates of heavy quark production are needed. We address the subject from the perspective of saturation physics and compute the heavy quark production cross section with the dipole model. We isolate shadowing and nonlinear effects, showing their impact on the charm structure function and on the transverse momentum spectrum.
Resumo:
Elastic scattering of (8)B, (7)Be, and (6)Li on a (58)Ni target has been measured at energies near the Coulomb barrier. Optical-model fits were made to the experimental angular distributions, and total reaction cross sections were deduced. A comparison with other systems provides striking evidence for proton-halo effects on (8)B reactions. As opposed to the situation for the neutron-halo nucleus (6)He, for which particle transfer dominates, the ""extra"" cross section observed for (8)B appears to result entirely from projectile breakup.
Resumo:
Atelectasis after either vaginal or Caesarean delivery has not been adequately quantified. This study addresses the hypothesis that atelectasis may be worse in women who undergo Caesarean section when compared with vaginal delivery under regional anaesthesia. Twenty healthy non-smoking women submitted to a chest computed tomography (CT) 2 h after delivery in a University Hospital, who had experienced vaginal delivery (n=10) under combined spinal-epidural analgesia or a Caesarean section (n=10) under spinal anaesthesia, were evaluated. The percentage cross-sectional area of atelectasis in dependent lung regions were measured from the CT images obtained at cross-section of the xiphoid process and the top of the diaphragm. The percentage cross-sectional area of atelectasis was 3.95% in the vaginal delivery group and 14.1% in the Caesarean group (P < 0.001, Mann-Whitney rank sum test). These results suggested that pulmonary atelectasis is greater after Caesarean section delivery under spinal anaesthesia than after vaginal delivery with combined spinal-epidural analgesia.
Resumo:
Described in this article is a novel device that facilitates study of the cross-sectional anatomy of the human head. In designing our device, we aimed to protect sections of the head from the destructive action of handling during anatomy laboratory while also ensuring excellent visualization of the anatomic structures. We used an electric saw to create 15-mm sections of three cadaver heads in the three traditional anatomic planes and inserted each section into a thin, perforated display box made of transparent acrylic material. The thin display boxes with head sections are kept in anatomical order in a larger transparent acrylic storage box containing formaldehyde solution, which preserves the specimens but also permits direct observation of the structures and their anatomic relationships to each other. This box-within-box design allows students to easily view sections of a head in its anatomical position as well as to examine internal structures by manipulating individual display boxes without altering the integrity of the preparations. This methodology for demonstrating cross-section anatomy allows efficient use of cadaveric material and technician time while also giving learners the best possible handling and visualization of complex anatomic structures. Our approach to teaching cross-sectional anatomy of the head can be applied to any part of human body, and the value of our device design will only increase as more complicated understandings of cross-sectional anatomy are required by advances and proliferation of imaging technology. Anat Sci Educ 3: 141-143, 2010. (C) 2010 American Association of Anatomists.
Resumo:
At very high energies we expect that the hadronic cross sections satisfy the Froissart bound, which is a well-established property of the strong interactions. In this energy regime we also expect the formation of the Color Glass Condensate, characterized by gluon saturation and a typical momentum scale: the saturation scale Q(s). In this paper we show that if a saturation window exists between the nonperturbative and perturbative regimes of Quantum Chromodynamics (QCD), the total cross sections satisfy the Froissart bound. Furthermore, we show that our approach allows us to described the high energy experimental data on pp/p (p) over bar total cross sections.
Resumo:
We use a new technique to investigate the systematic behavior of near barrier complete fusion, total fusion and total reaction cross sections of weakly bound systems. A dimensionless fusion excitation function is used as a benchmark to which renormalized fusion data are compared and dynamic breakup effects can be disentangled from static effects. The same reduction procedure is used to study the effect of the direct reaction mechanisms on the total reaction cross section.
Resumo:
Heavy-ion total reaction cross-section measurements for more than 1100 reaction cases covering 61 target nuclei in the range (6)Li-(238)U and 158 projectile nuclei from (2)H to (84)Kr (mostly exotic ones) have been analyzed in a systematic way by using an empirical, three-parameter formula that is applicable to the cases of projectile kinetic energies above the Coulomb barrier. The analysis has shown that the average total nuclear binding energy per nucleon of the interacting nuclei and their radii are the chief quantities that describe the cross-section patterns. A great amount of cross-section data (87%) has been quite satisfactorily reproduced by the proposed formula; therefore, the total reaction cross-section predictions for new, not yet experimentally investigated reaction cases can be obtained within 25% (or much less) uncertainty.
Resumo:
We have measured the elastic scattering cross-section for (8)Li + (9)Be and (8)Li + (51)V systems at 19.6 MeV and 18.5 MeV, respectively. We have also extracted total reaction cross sections from the elastic scattering analysis for several light weakly bound systems using the optical model with Woods-Saxon and double-folding-type potentials. Different reduction methods for the total reaction cross-sections have been applied to analyze and compare simultaneously all the systems.
Resumo:
Consider that an incident plane wave is scattered by a homogeneous and isotropic magnetic sphere of finite radius. We determine, by means of the rigorous Mie theory, an exact expression for the time-averaged electromagnetic energy within this particle. For magnetic scatterers, we find that the value of the average internal energy in the resonance picks is much larger than the one associated with a scatterer with the same nonmagnetic medium properties. This result is valid even, and especially, for low size parameter values. Expressions for the contributions of the radial and angular field components to the internal energy are determined. For the analytical study of the weak absorption regime, we derive an exact expression for the absorption cross section in terms of the magnetic Mie internal coefficients. We stress that, although the electromagnetic scattering by particles is a well-documented topic, almost no attention has been devoted to magnetic scatterers. Our aim is to provide some new analytical results, which can be used for magnetic particles, and emphasize the unusual properties of the magnetic scatters, which could be important in some applications. (C) 2010 Optical Society of America
Resumo:
Photoproduction reactions occur when the electromagnetic field of a relativistic heavy ion interacts with another heavy ion. The STAR Collaboration presents a measurement of rho(0) and direct pi(+)pi(-) photoproduction in ultraperipheral relativistic heavy ion collisions at root s(NN) = 200 GeV. We observe both exclusive photoproduction and photoproduction accompanied by mutual Coulomb excitation. We find a coherent cross section of sigma(AuAu -> Au*Au*rho(0)) = 530 +/- 19(stat.) +/- 57(syst.) mb, in accord with theoretical calculations based on a Glauber approach, but considerably below the predictions of a color dipole model. The rho 0 transverse momentum spectrum (p(T)(2)) is fit by a double exponential curve including both coherent and incoherent coupling to the target nucleus; we find sigma(inc)/sigma(coh) = 0.29 +/- 0.03 (stat.) +/- 0.08 (syst.). The ratio of direct pi(+)pi(-) to rho(0) production is comparable to that observed in gamma(p) collisions at HERA and appears to be independent of photon energy. Finally, the measured rho(0) spin helicity matrix elements agree within errors with the expected s-channel helicity conservation.
Resumo:
Objective: The objective of this study was to evaluate the influence of different Er:YAG laser (lambda = 2.94 mu m) energy parameters on the microtensile bond strength (mu TBS) and superficial morphology of bovine enamel bleached with 16% carbamide peroxide. Background: Laser irradiation could improve adhesion to bleached enamel surfaces. Methods: Sixty bovine enamel blocks (7x3x3 mm(3)) were randomly assigned to six groups according to enamel preparation procedures (n = 10): G1-bleaching and Er:YAG laser irradiation with 25.52 J/cm(2) (laser A, LA); G2-bleaching and Er:YAG laser irradiation with 4.42J/cm(2) (laser B, LB); G3-bleaching; G4-Er:YAG laser irradiation with 25.52 J/cm(2); G5-Er:YAG laser irradiation with 4.42J/cm(2); G6-control, no treatment. G1 to G3 were bleached for 6 h during 21 days. Afterwards, enamel surfaces in all groups were slightly abraded with 600-grit SiC papers and G1, G2, G4 and G5 were irradiated according to each protocol. Enamel blocks were then restored with an etch-and-rinse adhesive system and a 4-mm thick composite buildup was made in two increments (n = 9). After 24 h, restored blocks were serially sectioned with a cross-section area of similar to 1 mm(2) at the bonded interface and tested in tension in a universal testing machine (1 mm/min). Failure mode was determined at a magnification of x100 using a stereomicroscope. One treated block of each group was selected for scanning electron microscopy (SEM) analysis. mu TBS data were analyzed by two-way ANOVA and no statistical differences were observed among groups. Results: Mean bond strengths (SD) in MPa were: G1-30.4(6.2); G2-27.9(8.5); G3-32.3(3.9); G4-23.7(5.8); G5-29.3(6.0); G6-29.1(6.1). A large number of adhesive failures was recorded for bleached and irradiated enamel surfaces. Conclusions: Bleached enamel surfaces mu TBS values were not significantly different from those of unbleached enamel. Even though Er:YAG laser irradiation with both parameters had no influence on mu TBS for bleached and unbleached enamel, SEM analysis revealed that Er:YAG laser irradiation with 25.52J/cm(2) should not be recommended, as enamel ablation was observed, whereas irradiation with 4.42J/cm(2) did not promote any remarkable changes on enamel surface.