18 resultados para power-law graph
Resumo:
The addition of lithium salts to ionic liquids causes an increase in viscosity and a decrease in ionic mobility that hinders their possible application as an alternative solvent in lithium ion batteries. Optically heterodyne-detected optical Kerr effect spectroscopy was used to study the change in dynamics, principally orientational relaxation, caused by the addition of lithium bis(trifluoromethylsulfonyl)imide to the ionic liquid 1-buty1-3-methylimidazolium bis(trifluoromethylsulfonyl)imide. Over the time scales studied (1 ps-16 ns) for the pure ionic liquid, two temperature-independent power laws were observed: the intermediate power law (1 ps to similar to 1 ns), followed by the von Schweidler power law. The von Schweidler power law is followed by the final complete exponential relaxation, which is highly sensitive to temperature. The lithium salt concentration, however, was found to affect both power laws, and a discontinuity could be found in the trend observed for the intermediate power law when the concentration (mole fraction) of lithium salt is close to chi(LiTf(2)N) = 0.2. A mode coupling theory (MCT) schematic model was also used to fit the data for both the pure ionic liquid and the different salt concentration mixtures. It was found that dynamics in both types of liquids are described very well by MCT.
The shoving model for the glass-former LiCl center dot 6H(2)O: A molecular dynamics simulation study
Resumo:
Molecular dynamics (MD) simulations of LiCl center dot 6H(2)O Showed that the diffusion coefficient D, and also I lie structural relaxation time
Resumo:
Two techniques, namely UV-vis- and FTIR spectroscopy, have been employed in order to calculate the degree of substitution (DS) of cellulose carboxylic esters, including acetates, CAs, butyrates, CBs, and hexanoates, CHs. Regarding UV-vis spectroscopy, we have employed a novel approach, based on measuring the dependence of lambda(max) of the intra-molecular charge-transfer bands of polarity probes adsorbed on DS of the ester films (solvatochromism). Additionally, we have revisited the use of FTIR for DS determination. Several methods have been used in order to plot Beer`s law graph, namely: Absorption of KBr pellets, pre-coated with CA: reflectance (DRIFTS) of CAs-KBr solid-solid mixtures with, or without the use of 1.4-dicyanobenzene as an internal reference; reflectance of KBr powder pre-coated with CA. The methods indicated are simple, fast, and accurate, requiring much less ester than the titration method. The probe method is independent of the experimental variables examined. (c) 2010 Published by Elsevier Ltd.