43 resultados para phosphorous fertilizer
Resumo:
Biofuels are both a promising solution to global warming mitigation and a potential contributor to the problem. Several life cycle assessments of bioethanol have been conducted to address these questions. We performed a synthesis of the available data on Brazilian ethanol production focusing on greenhouse gas (GHG) emissions and carbon (C) sinks in the agricultural and industrial phases. Emissions of carbon dioxide (CO(2)) from fossil fuels, methane (CH(4)) and nitrous oxide (N(2)O) from sources commonly included in C footprints, such as fossil fuel usage, biomass burning, nitrogen fertilizer application, liming and litter decomposition were accounted for. In addition, black carbon (BC) emissions from burning biomass and soil C sequestration were included in the balance. Most of the annual emissions per hectare are in the agricultural phase, both in the burned system (2209 out of a total of 2398 kg C(eq)), and in the unburned system (559 out of 748 kg C(eq)). Although nitrogen fertilizer emissions are large, 111 kg C(eq) ha-1 yr-1, the largest single source of emissions is biomass burning in the manual harvest system, with a large amount of both GHG (196 kg C(eq) ha-1 yr-1). and BC (1536 kg C(eq) ha-1 yr-1). Besides avoiding emissions from biomass burning, harvesting sugarcane mechanically without burning tends to increase soil C stocks, providing a C sink of 1500 kg C ha-1 yr-1 in the 30 cm layer. The data show a C output: input ratio of 1.4 for ethanol produced under the conventionally burned and manual harvest compared with 6.5 for the mechanized harvest without burning, signifying the importance of conservation agricultural systems in bioethanol feedstock production.
Resumo:
Due to the worldwide increase in demand for biofuels, the area cultivated with sugarcane is expected to increase. For environmental and economic reasons, an increasing proportion of the areas are being harvested without burning, leaving the residues on the soil surface. This periodical input of residues affects soil physical, chemical and biological properties, as well as plant growth and nutrition. Modeling can be a useful tool in the study of the complex interactions between the climate, residue quality, and the biological factors controlling plant growth and residue decomposition. The approach taken in this work was to parameterize the CENTURY model for the sugarcane crop, to simulate the temporal dynamics of aboveground phytomass and litter decomposition, and to validate the model through field experiment data. When studying aboveground growth, burned and unburned harvest systems were compared, as well as the effect of mineral fertilizer and organic residue applications. The simulations were performed with data from experiments with different durations, from 12 months to 60 years, in Goiana, TimbaA(0)ba and Pradpolis, Brazil; Harwood, Mackay and Tully, Australia; and Mount Edgecombe, South Africa. The differentiation of two pools in the litter, with different decomposition rates, was found to be a relevant factor in the simulations made. Originally, the model had a basically unlimited layer of mulch directly available for decomposition, 5,000 g m(-2). Through a parameter optimization process, the thickness of the mulch layer closer to the soil, more vulnerable to decomposition, was set as 110 g m(-2). By changing the layer of mulch at any given time available for decomposition, the sugarcane residues decomposition simulations where close to measured values (R (2) = 0.93), contributing to making the CENTURY model a tool for the study of sugarcane litter decomposition patterns. The CENTURY model accurately simulated aboveground carbon stalk values (R (2) = 0.76), considering burned and unburned harvest systems, plots with and without nitrogen fertilizer and organic amendment applications, in different climates and soil conditions.
Resumo:
Currently there is a trend for the expansion of the area cropped with sugarcane (Saccharum officinarum L.), driven by an increase in the world demand for biofuels, due to economical, environmental, and geopolitical issues. Although sugarcane is traditionally harvested by burning dried leaves and tops, the unburned, mechanized harvest has been progressively adopted. The use of process based models is useful in understanding the effects of plant litter in soil C dynamics. The objective of this work was to use the CENTURY model in evaluating the effect of sugarcane residue management in the temporal dynamics of soil C. The approach taken in this work was to parameterize the CENTURY model for the sugarcane crop, to simulate the temporal dynamics of soil C, validating the model through field experiment data, and finally to make predictions in the long term regarding soil C. The main focus of this work was the comparison of soil C stocks between the burned and unburned litter management systems, but the effect of mineral fertilizer and organic residue applications were also evaluated. The simulations were performed with data from experiments with different durations, from 1 to 60 yr, in Goiana and Timbauba, Pernambuco, and Pradopolis, Sao Paulo, all in Brazil; and Mount Edgecombe, Kwazulu-Natal, South Africa. It was possible to simulate the temporal dynamics of soil C (R(2) = 0.89). The predictions made with the model revealed that there is, in the long term, a trend for higher soil C stocks with the unburned management. This increase is conditioned by factors such as climate, soil texture, time of adoption of the unburned system, and N fertilizer management.
Resumo:
In low fertility tropical soils, boron (B) deficiency impairs fruit production. However, little information is available on the efficiency of nutrient application and use by trees. Therefore, this work verified the effects of soil and foliar applications of boron in a commercial citrus orchard. An experiment was conducted with fertigated 4-year-old `Valencia` sweet orange trees on `Swingle` citrumelo rootstock. Boron (isotopically-enriched 10B) was supplied to trees once or twice in the growing season, either dripped in the soil or sprayed on the leaves. Trees were sampled at different periods and separated into different parts for total B contents and 10B/11B isotope ratios analyses. Soil B applied via fertigation was more efficient than foliar application for the organs grown after the B fertilization. Recovery of labeled B by fruits was 21% for fertigation and 7% for foliar application. Residual effects of nutrient application in the grove were observed in the year after labeled fertilizer application, which greater proportions derived from the soil supply.
Resumo:
This work aimed to study the possible alterations in production, accumulation of the vegetative phytomass and nitrogen efficiency use of the maize crop, in different doses of N applied in the fertilization, by using the technique of isotopic dilution of (15)N. The completely randomized block experimental design was adopted, with 5 treatments and 4 replicates. The following treatments were constituted in the doses in covering: 0, 50, 100, 150 and 200 kg ha(-1) of N, with fertilization of N-urea, respectively. Comparisons among the treatments had been run for crop productivity; nitrogen accumulation for the plant, and use of the nitrogen of the urea-(15)N for the crop. The increase of the dose of N-fertilizer resulted in increase of the dry matter mass, of the dry matter yield crop tax, of the productivity and accumulation of N in the maize plants.
Resumo:
The tomato culture demands large quantities of mineral nutrients, which are supplied by synthetic fertilizers in the conventional cultivation system. In the organic cultivation system only alternative fertilizers are allowed by the certifiers and accepted as safe for humans and environment. The chemical composition of rice bran, oyster flour, cattle manure and ground charcoal, as well as soils and tomato fruits were evaluated by instrumental neutron activation analysis (INAA). The potential contribution of organic fertilizers to the enrichment of chemical elements in soil and their transfer to fruits was investigated using concentration ratios for fertilizer and soil samples, and also for soil and tomato. Results evidenced that these alternative fertilizers could be taken as important sources of Br, Ca, Ce, K, Na and Zn for the organic tomato culture.
Resumo:
Seed phytate and protein content in beans depending on the application of basalt powder. The content of phytate in the grains is correlated with the supply of phosphorus to the plant, but there is a lack of knowledge as to possible effect of slower availability of nutrients in the soil. The objectives of this study were to assess the effect of rock powder, alone or combined with cattle manure, on the productivity, levels of phosphorus, protein and phytate content in beans. The experiment was carried out in a randomized blocks design, with four replications. The treatments were control (limestone, granite and natural phosphate); conventional fertilization; powder basalt (2.5, 5.0, 10.0 and 20.0 ton. ha(-1)); cattle manure, and doses of powder basalt with cattle manure. In the treatment with conventional fertilizer, the total phosphorus content in grain was higher than the control, but the application of powder of basalt did not show a difference significant. Increase in the doses of basalt powder increased the phosphorus content, but phytate content remained constant. Basalt powder proved to be an alternative to maintain low levels of phosphorus in the form of phytate in the grains.
Resumo:
Samples from the weathering mantle containing crandallite of three Brazilian phosphate deposits, Tapira, Catalo, and Juqui, were characterized, calcined, and agronomically evaluated. The calcination process increased total phosphorus (P) and neutral ammonium citrate soluble (NAC) P contents of all samples. The NAC solubility of original Tapira, Catalo, and Juqui was about 5% of total P, whereas for calcined samples it was 54, 16, and 53%, respectively. In a greenhouse study, rates of P were applied at 0, 10, 20, 40, 80, and 120mg P kg(-1) from the calcined materials and MCP (monocalcium phosphate) to an Ultisol cropped with upland and flooded rice for 65 days. The results showed that the calcined P samples increased dry-matter yield and P uptake with increasing rates of P applied for both crops. Tapira and Juqui were more effective for flooded than for upland rice. The calculated values of relative agronomic effectiveness of Tapira, Catalo, and Juqui with respect to MCP were 57, 48, and 53% in dry-matter yield for upland rice and 64, 50, and 69% for flooded rice, respectively.
Resumo:
Phosphinic-derivative poly(styrene-co-divinylbenzene)-based on PS-DVB copolymers with different porosity degrees have been prepared by aromatic electrophilic substitution reaction using PCl(3)/AlCl(3) followed by base-promoted hydrolysis. The phosphorylation reaction was analyzed by infra-red spectroscopy (FTIR), scanning electron microscopy (SEM), and thermogravimetry (TG/DTG). In addition, the phosphorous content of the phosphorylated copolymers was determined by spectrophotometry using the method based on sodium molybdate reactant so that the extension of that modification could be assessed. The performance of the phosphorylated resins in the extraction of Pb(2+) from aqueous solutions in a batch system was also evaluated. The Pb(2+) content was determined by atomic absorption spectrometry (AAS). These materials presented excellent extraction capacity under the contact time of 30 min and pH 6.
Resumo:
In greenhouse potato cultivation, mineral nutrition is one of the main factors contributing to high yields and better product quality. Knowledge about the amount of nutrients accumulated in the plants at each growing phase provides important information that helps the establishment of a more balanced fertilizer application. The objective of this research was to determine the time course of macronutrients uptake and accumulation in potato plants for seed-tuber production, grown in nutrient solution. The experiment was carried out in a greenhouse, using in vitro material from the pre-basic category of the `Atlantic` variety. The plants were collected weekly from 14 days after transplanting (DAT) until 70 DAT The experimental design was a completely randomized block with 9 treatments to sampling times and four replicates. The highest nutrient requirement in the plant shoot occurred at the periods between 28 and 56 DAT while in the tubers it was after 49 DAT The maximum accumulation sequence of macronutrients was K > N > S > Ca > P > Mg.
Resumo:
The sustainability of fast-growing tropical Eucalyptus plantations is of concern in a context of rising fertilizer costs, since large amounts of nutrients are removed with biomass every 6-7 years from highly weathered soils. A better understanding of the dynamics of tree requirements is required to match fertilization regimes to the availability of each nutrient in the soil. The nutrition of Eucalyptus plantations has been intensively investigated and many studies have focused on specific fluxes in the biogeochemical cycles of nutrients. However, studies dealing with complete cycles are scarce for the Tropics. The objective of this paper was to compare these cycles for Eucalyptus plantations in Congo and Brazil, with contrasting climates, soil properties, and management practices. The main features were similar in the two situations. Most nutrient fluxes were driven by crown establishment the two first years after planting and total biomass production thereafter. These forests were characterized by huge nutrient requirements: 155, 10, 52, 55 and 23 kg ha(-1) of N, P, K, Ca and Mg the first year after planting at the Brazilian study site, respectively. High growth rates the first months after planting were essential to take advantage of the large amounts of nutrients released into the soil solutions by organic matter mineralization after harvesting. This study highlighted the predominant role of biological and biochemical cycles over the geochemical cycle of nutrients in tropical Eucalyptus plantations and indicated the prime importance of carefully managing organic matter in these soils. Limited nutrient losses through deep drainage after clear-cutting in the sandy soils of the two study sites showed the remarkable efficiency of Eucalyptus trees in keeping limited nutrient pools within the ecosystem, even after major disturbances. Nutrient input-output budgets suggested that Eucalyptus plantations take advantage of soil fertility inherited from previous land uses and that long-term sustainability will require an increase in the inputs of certain nutrients. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Contrasting responses of Eucalyptus trees to K fertilizer applications have been reported on soils with low K contents. A complete randomized block experiment was set up in Brazil to test the hypothesis that large atmospheric deposits of NaCl in coastal regions might lead to a partial substitution of K by Na in Eucalyptus physiology and enhance tree growth. Treatments with application of 1.5, 3.0, 4.5 kmol K ha(-1) (K(1.5), K(3.0), 1(4.5, respectively) as KCl, 3.0 kmol K ha(-1) applied as K(2)SO(4), 3.0 kmol Na ha(-1) (Na(3.0)) as NaCl commercialized for cattle feeding, and a mixture of 1.5 kmol K + 1.5 kmol Na ha(-1) (K(1.5) + Na(1.5)) were compared to a control treatment (C) with no K and Na applications. All the plots were fertilized with large amounts of the other nutrients. A positive effect of NaCl applications on the growth of E. grandis trees was observed. NaCl and KCl additions in treatments Na(3.0) and K(3.0) increased above-ground biomass by 56% and 130% three years after planting, respectively, in comparison with the C treatment. By contrast, accumulated litterfall up to age 3 years was not significantly modified. NaCl applications in the Na(3.0) treatment significantly increased Na accumulation in above-ground tree components but did not modify K accumulation, whatever the sampling age. A partial substitution of K by Na in tree physiology, as observed for various agricultural crops, might explain this behaviour. Our results suggest the possibility of applying inexpensive K fertilizers, which are less purified in Na, and explain why high yields are achieved without K fertilizer applications in areas with large dry depositions of marine aerosols. Further investigations are necessary to identify the processes involving Na in Eucalyptus tree physiology. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Only 7% of the once extensive forest along the eastern coast of Brazil remains, and much of that is degraded and threatened by agricultural expansion and urbanization. We wondered if methods similar to those developed to establish fast-growing Eucalyptus plantations might also work to enhance survival and growth of rainforest species on degraded pastures composed of highly competitive C(4) grasses. An 8-factor experiment was laid out to contrast the value of different intensities of cultivation, application of fertilizer and weed control on the growth and survival of a mixture of 20 rainforest species planted at two densities: 3 m x 1 m, and 3 m x 2 m. Intensive management increased seedling survival from 90% to 98%, stemwood production and leaf area index (LAI) by similar to 4-fold, and stemwood production per unit of light absorbed by 30%. Annual growth in stem biomass was closely related to LAI alone (r(2) = 0.93, p < 0.0001), and the regression improved further in combination with canopy nitrogen content (r(2) =0.99, p < 0.0001). Intensive management resulted in a nearly closed forest canopy in less than 4 years, and offers a practical means to establish functional forests on abandoned agricultural land. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Leaching is disadvantageous, both for economical and environmental reasons since it may decrease the ecosystem productivity and may also contribute to the contamination of surface and ground water. The objective of this paper was to quantify the loss of nitrogen and sulfur by leaching, at the depth of 0.9 m, in an Ultisol in Sao Paulo State (Brazil) with high permeability, Cultivated with sugarcane during the agricultural cycle of crop plant. The following ions were evaluated: nitrite, nitrate, ammonium, and sulfate. Calcium, magnesium, potassium, and phosphate were also evaluated at the same depth. The sugarcane was planted and fertilized in the furrows with 120 log ha(-1) of N-urea. In order to find out the fate of N-fertilizer, four microplots with (15)N-enriched fertilizer were installed. Input and output of the considered ions at the depth of 0.9 m were quantified from the flux density of water and the concentration of the elements in the soil solution at this soil depth: tensiometers, soil water retention curve and soil solution extractors were used for this quantification. The internal drainage was 205 mm of water, with a total loss of 18 kg ha(-1) of N and 10 kg ha(-1) of S. The percentage of N in the soil solution derived from the fertilizer (%NSSDF) was 1.34, resulting in only 25 g ha(-1) of N fertilizer loss by leaching during all agricultural cycle. Under the experimental conditions of this crop plant, that is, high demand of nutrients and high incorporation of crop residues, the leached N represented 15% of applied N and S leaching were not considerable; the higher amount of leached N was native nitrogen and a minor quantity from N fertilizer; and the leached amount of Ca, Mg, K and P did not exceed the applications performed in the crop by lime and fertilization. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Nutrient dynamics in tropical soils sustaining forage grasses are still poorly understood. We conducted a study to evaluate the effect of combined N and S fertilizer rates on the growth of `Marandu` palisade grass [Brachiaria brizantha (Hochst. ex A. Rich.) Stapf], uptake of these elements from the soil by plants, soil organic matter concentration, soil pH, and the mineral and organic fractions of N and S in an Entisol. Combinations of five N rates (0, 100, 200, 300, and 400 g N m(-3)) with five S rates (0, 10, 20, 30, and 40 g S m(-3)) were evaluated in a partial 5 x 5 factorial in a pot experiment, with and without plants. Nitrogen and S were supplied as NH(4)NO(3) and CaSO(4)center dot 2H(2)O, respectively. The N addition in excess did not enhance the palisade grass production due to low plant-available Sin the soil. The supply of low rates of S with N greatly improved the overall N uptake efficiency by the forage plant. The contents of total N, NO(3)(-)-N, and NH(4)(+)-N in the soil varied with N rate and with N uptake by the plants. The association of palisade grass with S fertilization increased the ester-bonded S fraction in the soil. The results suggest that soil residual S could be a potential source of S for plants. Proper N and S fertilizer rates promoted increased grass production due to increased uptake of these nutrients and the dynamics of the organic N and S fractions and mineral fractions in this tropical soil.