34 resultados para overtone absorption
Resumo:
Polyaniline is a conducting polymer with appealing electrical and optical properties, arising from the -conjugation along the polymer backbone. The understanding of its excited state absorption is of prime importance for designing and fabricating optical devices. Here, we report on the study of the excited state absorption of doped and undoped PANI by using femtosecond pulses in the spectral range from 450nm up to 850nm. For undoped PANI, we observed saturation of absorption as well as reverse saturable absorption, depending on the excitation wavelength. For doped PANI, however, only saturable absorption was observed.
Resumo:
This work investigates the two-photon absorption spectrum of perylene tetracarboxylic derivatives using the white-light continuum Z-scan technique. Perylene derivatives present relatively high two-photon absorption cross-section, which makes them attractive for applications in photonics. Because of the spectral resolution of the white-light continuum Z-scan, we were able to observe a well defined structure in the two-photon absorption spectrum, composed by two distinct peaks. These peaks, as well as the resonant enhancement of the nonlinearity, were modeled using the sum-over-states approach considering a four-level energy diagram with two final two-photon states. The existence of such states was confirmed using the response function formalism within the DFT framework. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
We report a pump-probe study of the two-photon induced reflectivity changes in bis (n-butylimido) perylene thin films. To enhance the two-photon excitation we deposited bis (n-butylimido) perylene films on top of gold nanoislands. The observed transient response in the reflectivity spectrum of bis (n-butylimido) perylene is due to a depletion of the molecule`s ground state and excited state absorption.
Resumo:
In this work, we investigate the control of the two-photon absorption process of a series of organic compounds via spectral phase modulation of the excitation pulse. We analyzed the effect of the pulse central wavelength on the control of the two-photon absorption process for each compound. Depending on the molecules` two-photon absorption position relative to the excitation pulse wavelength, different levels of coherent control were observed. By simulating the two-photon transition probability in molecular systems, taking into account the band structure and its positions, we could explain the experimental results trends. We observed that the intrapulse coherent interference plays an important role in the nonlinear process control besides just the pulse intensity modulation.
Resumo:
Neodymium doped yttrium aluminoborate and yttrium calcium borate glasses were prepared by the conventional melting-quenching technique with neodymium concentration varying from 0.10 to 1.0 mol%. The obtained glasses present a wide transparency in the UV-visible region (till 240 nm). The thermoluminescent (TL) emission of beta-irradiated samples was measured, showing a broad peak at similar to 240 degrees C with intensities related to the Nd(3+) content, for both glasses. Calcium borate glass samples are about one order of magnitude less luminescent than the aluminoborate glasses. Probably the presence of Ca(2+), instead of Al(3+) and Y(3+) in the matrix, inhibits the production of the intrinsic hole centers. connected to boron and oxygen, known in the literature to act as luminescent centers in TL emission of borate glasses. We suggest that Nd(3+) ions act as electron trapping centers in both glass matrices, as they modify the temperature of emission and the light intensity. Also, the Nd:YAIB glass can be used as a dosimeter in various applications, including radiotherapy. but the sensitivity of this material to neutron should be checked. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
In this work we used the conversion process of a precursor polymer into polyparaphenylenevinylene (PPV) at low temperatures in order to control the effective conjugation degree of spin-casted PPV films. The absorption and emission spectra of the films were studied by following a partial substitution of chloride counterions from poly(xylylidene tetrahydrothiophenium chloride) (PTHT), used as a precursor, by sodium acid dodecyl benzenesulfonate (DBS), added as a surfactant salt. Upon controlling the DBS amount and conversion temperature (T-c) of PTHT/DBS to PPV films, the band gap of PPV changed from 409 to 506 nm, and 505 to 532 nm, values obtained from absorbance and emission measurements, respectively. Based on these experimental data, we proposed a physical model which represents the chemical structure of PPV as a distribution of conjugated chain segments (like oligomers) alternated by non-conjugated segments (structural defects and/or from the precursor polymer). (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
We carried out experiments of induced birefringence via two-photon absorption in spin-coated films of the conjugated polymer poly[2-[ethyl-[4-(4-nitro-phenylazo)-phenyl] -amino]-ethane (3-thienyl)ethanoate], PAzT, at 680 and 775 nm. This process allows recording in the bulk because of the spatial confinement of the bireffingence provided by the two-photon absorption. The induced birefringence is associated with molecular reorientation caused by the two-photon induced isomerization of the azochromophores attached to the polymer backbone. In addition, the two-photon absorption spectrum of PAzT was measured to help selecting the excitation wavelength for two-photon absorption induced birefringence. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Two-photon absorption spectra of a triarylamine compounds dissolved in toluene were measured using the well-known Z-scan technique, employing 120-fs laser pulse-width. According to the results, an extra band located at around 900 nm was observed only for triarylamine with azoaromatic units. On the other hand, a shift in the two-photon absorption band for triarylamine, with and without azoaromatic units, is observed when different electron donor/acceptors groups are changed. The fitting of the spectra, using sum-over-states model, allowed us to obtain the spectroscopic parameters of each molecule, which appears to be in reasonable agreement with molecules presenting similar structural moieties. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Excited state absorption and excited state dynamics of indocyanine-green (ICG) dissolved in dymethyl sulfoxide were measured using white-light continuum Z-scan (WLCZScan) and white-light continuum pump-probe (WLCPP) techniques. The excited state absorption spectrum, obtained through Z-scan measurements, revealed saturable absorption (SA) for wavelengths longer than 630 nm, while reverse saturable absorption (RSA) appeared, as indicated by a band at approximately 570 nm. Both processes were modeled by a three-energy-level diagram, from which the excited state cross-section values were determined. SA and RSA were also observed in pump-probe experiments, with a recovery time in the hundreds of picoseconds time scale due to the long lifetime of the first excited state of ICG. Such results contribute to the understanding of ICG optical properties, allowing application in photonics and medicine. Copyright (C) 2010 John Wiley & Sons, Ltd.
Resumo:
In this work we studied the properties of absorption and emission line shape of layer-by-layer (LBL) poly(p-phenylene vinylene) (PPV) on indium-tin oxide (ITO) electrode. To minimize the PPV thermal conversion effects during the polymer processing, we used a less aggressive leaving group in the precursor polymer; minimizing electrode degradation. LBL ITO/PPV films showed the same absorption and emission line shape compared with LBL PPV films deposited on non-metallic substrates (glass). With this analysis we indirectly observe the decrease in the ITO degradation. Atomic force microscopy (AFM) technique was used to analyze quantitatively the microscopic morphology of the film surface. Results indicated that the substrate topology is not affected, to a large extent, by the use of dodecylbenzensulfonate (DBS) ion. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Two-photon absorption induced polymerization provides a powerful method for the fabrication of intricate three-dimensional microstructures. Recently, Lucirin TPO-L was shown to be a photoinitiator with several advantageous properties for two-photon induced polymerization. Here we measure the two-photon absorption cross-section spectrum of Lucirin TPO-L, which presents a maximum of 1.2 GM at 610 nm. Despite its small two-photon absorption cross-section, it is possible to fabricate excellent microstructures by two-photon polymerization due to the high polymerization quantum yield of Lucirin TPO-L. These results indicate that optimization of the two-photon absorption cross-section is not the only material parameter to be considered when searching for new photoinitiators for microfabrication via two-photon absorption.
Resumo:
This paper reports a method for the direct and simultaneous determination of Cr and Mn in alumina by slurry sampling graphite furnace atomic absorption spectrometry (SiS-SIMAAS) using niobium carbide (NbC) as a graphite platform modifier and sodium fluoride (NaF) as a matrix modifier. 350 mu g of Nb were thermally deposited on the platform surface allowing the formation of NbC (mp 3500 degrees C) to minimize the reaction between aluminium and carbon of the pyrolytic platform, improving the graphite tube lifetime up to 150 heating cycles. A solution of 0.2 mol L(-1) NaF was used as matrix modifier for alumina dissolution as cryolite-based melt, allowing volatilization during pyrolysis step. Masses (c.a. 50 mg) of sample were suspended in 30 ml of 2.0% (v/v) of HNO(3). Slurry was manually homogenized before sampling. Aliquots of 20 mu l of analytical solutions and slurry samples were co-injected into the graphite tube with 20 mu l of the matrix modifier. In the best conditions of the heating program, pyrolysis and atomization temperatures were 1300 degrees C and 2400 degrees C, respectively. A step of 1000 degrees C was optimized allowing the alumina dissolution to form cryolite. The accuracy of the proposed method has been evaluated by the analysis of standard reference materials. The found concentrations presented no statistical differences compared to the certified values at 95% of the confidence level. Limits of detection were 66 ng g(-1) for Cr and 102 ng g(-1) for Mn and the characteristic masses were 10 and 13 pg for Cr and Mn, respectively.
Resumo:
In situ fusion on the boat-type graphite platform has been used as a sample pretreatment for the direct determination of Co, Cr and Mn in Portland cement by solid sampling graphite furnace atomic absorption spectrometry (SS-GF AAS). The 3-field Zeeman technique was adopted for background correction to decrease the sensitivity during measurements. This strategy allowed working with up to 200 mu g of sample. The in situ fusion was accomplished using 10 mu L of a flux mixture 4.0% m/v Na(2)CO(3) + 4.0% m/v ZnO + 0.1% m/v Triton (R) X-100 added over the cement sample and heated at 800 degrees C for 20 s. The resulting mould was completely dissolved with 10 mu L of 0.1% m/v HNO(3). Limits of detection were 0.11 mu g g(-1) for Co, 1.1 mu g g(-1) for Cr and 1.9 mu g g(-1) for Mn. The accuracy of the proposed method has been evaluated by the analysis of certified reference materials. The values found presented no statistically significant differences compared to the certified values (Student`s t-test, p<0.05). In general, the relative standard deviation was lower than 12% (n = 5). (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The physical and chemical characteristics of peat were assessed through measurement of pH, percentage of organic matter, cationic exchange capacity (CEC), elemental analysis, infrared spectroscopy and quantitative analysis of metals by ICP OES. Despite the material showed to be very acid in view of the percentage of organic matter, its CEC was significant, showing potential for retention of metal ions. This characteristic was exploited by coupling a peat mini-column to a flow system based on the multicommutation approach for the in-line copper concentration prior to flame atomic absorption spectrometric determination. Cu(II) ions were adsorbed at pH 4.5 and eluted with 0.50 mol L(-1) HNO(3). The influence of chemical and hydrodynamic parameters, such as sample pH, buffer concentration, eluent type and concentration, sample flow-rate and preconcentration time were investigated. Under the optimized conditions, a linear response was observed between 16 and 100 mu g L(-1), with a detection limit estimated as 3 mu g L(-1) at the 99.7% confidence level and an enrichment factor of 16. The relative standard deviation was estimated as 3.3% (n = 20). The mini-column was used for at least 100 sampling cycles without significant variation in the analytical response. Recoveries from copper spiked to lake water or groundwater as well as concentrates used in hemodialysis were in the 97.3-111 % range. The results obtained for copper determination in these samples agreed with those achieved by graphite furnace atomic absorption spectrometry (GFAAS) at the 95% confidence level. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
A fast and reliable method for the direct determination of iron in sand by solid sampling graphite furnace atomic absorption spectrometry was developed. A Zeeman-effect 3-field background corrector was used to decrease the sensitivity of spectrometer measurements. This strategy allowed working with up to 200 mu g of samples, thus improving the representativity. Using samples with small particle sizes (1-50 mu m) and adding 5 mu g Pd as chemical modifier, it was possible to obtain suitable calibration curves with aqueous reference solutions. The pyrolysis and atomization temperatures for the optimized heating program were 1400 and 2500 degrees C, respectively. The characteristic mass, based on integrated absorbance, was 56 pg, and the detection limits, calculated considering the variability of 20 consecutive measurements of platform inserted without sample was 32 pg. The accuracy of the procedure was checked with the analysis of two reference materials (IPT 62 and 63). The determined concentrations were in agreement with the recommended values (95% confidence level). Five sand samples were analyzed, and a good agreement (95% confidence level) was observed using the proposed method and conventional flame atomic absorption spectrometry. The relative standard deviations were lower than 25% (n = 5). The tube and boat platform lifetimes were around 1000 and 250 heating cycles, respectively.