43 resultados para nuclear magnetic resonance (NMR)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The interaction of 4-nerolidylcatechol (4-NRC), a potent antioxidant agent, and 2-hydroxypropyl-beta-cyclodextrin (HP-beta-CD) was investigated by the solubility method using Fourier transform infrared (FTIR) methods in addition to UV-Vis, (1)H-nuclear magnetic resonance (NMR) spectroscopy and molecular modeling. The inclusion complexes were prepared using grinding, kneading and freeze-drying methods. According to phase solubility studies in water a B(S)-type diagram was found, displaying a stoichiometry complexation of 2:1 (drug:host) and stability constant of 6494 +/- A 837 M(-1). Stoichiometry was established by the UV spectrophotometer using Job`s plot method and, also confirmed by molecular modeling. Data from (1)H-NMR, and FTIR, experiments also provided formation evidence of an inclusion complex between 4-NRC and HP-beta-CD. 4-NRC complexation indeed led to higher drug solubility and stability which could probably be useful to improve its biological properties and make it available to oral administration and topical formulations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two hybrid materials based on dodecatungstophosphoric acid (HPW) dispersed in ormosils modified with 3-aminopropiltrietoxysilane (APTS) or with N-(3-(trimethoxysilyl)-propyl)-ethylene-diamine (TSPEN) show reversible photochromic response induced by irradiation in the 200-390 nm UV range. A set of solid-state nuclear magnetic resonance (NMR) techniques was used to analyze the structural properties of the main components of these hybrids (the HPW polyanion, the inorganic matrix, and the organic functionalities). For the ormosils, the use of (29)Si NMR, {(1)H}-(29)Si cross-polarization, and {(1)H}-(29)Si HETCOR revealed a homogeneous distribution of silicon species Q ``, T(2), and T(3) for the APTS hybrid, contrasting with the separation of T(3) species in the TSPEN hybrid. The combination of (31)P NMR, {(1)H}-(31)P cross-polarization and (31)P-{(1)H} spin-echo double resonance (SEDOR) revealed the dispersion of the HPW ions in the ormosil, occupying sites with a high number of close protons (>50). Differences in the molecular dynamics at room temperature, inferred from SEDOR experiments, indicate a state of restricted mobility of the HPW ion and the surrounding molecular groups in the TSPEN hybrid. This behavior is consistent with the presence of more amino groups in the TSPEN, acting as chelating groups to the HPW ion. This hybrid, with the strong chelate interaction of the diamine group, shows the most intense photochromic response, in agreement with the charge transfer models proposed to explain the photochromic effect. Electronic reflectance spectroscopy in irradiated samples revealed the presence of one-electron and two-electron reduced polyanions. The one-electron reduced species could be detected also by (31)P NMR spectroscopy immediately after UV irradiation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study presents the preparation, characterization and application of copper octa(3-aminopropyl)octasilsesquioxane following its subsequent reaction with azide ions (ASCA). The precursor (AC) and the novel compound (ASCA) were characterized by Fourier transform infrared spectra (FTIR), nuclear magnetic resonance (NMR), electron paramagnetic resonance (EPR), scanning electronic microscopy (SEM), X-ray diffraction (XRD), Thermogravimetric analyses and voltammetric technique. The cyclic voltammogram of the modified graphite paste electrode with ASCA (GPE-ASCA), showed one redox couple with formal potential (E(1/2)(ox)) = 0.30 V and an irreversible process at 1.1 V (vs. Ag/AgCl; NaCl 1.0 M; v = 20 mV s(-1)). The material is very sensitive to nitrite concentrations. The modified graphite paste electrode (GPE-ASCA) gives a linear range from 1.0 x 10(-4) to 4.0 x 10(-3) mol L(-1) for the determination of nitrite, with a detection limit of 2.1 x 10(-4) mol L(-1) and the amperometric sensitivity of 8.04 mA/mol L(-1). (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The NMR spin coupling parameters, (1)J(N,H) and (2)J(H,H), and the chemical shielding, sigma((15)N), of liquid ammonia are studied from a combined and sequential QM/MM methodology. Monte Carlo simulations are performed to generate statistically uncorrelated configurations that are submitted to density functional theory calculations. Two different Lennard-Jones potentials are used in the liquid simulations. Electronic polarization is included in these two potentials via an iterative procedure with and without geometry relaxation, and the influence on the calculated properties are analyzed. B3LYP/aug-cc-pVTZ-J calculations were used to compute the V(N,H) constants in the interval of -67.8 to -63.9 Hz, depending on the theoretical model used. These can be compared with the experimental results of -61.6 Hz. For the (2)J(H,H) coupling the theoretical results vary between -10.6 to -13.01 Hz. The indirect experimental result derived from partially deuterated liquid is -11.1 Hz. Inclusion of explicit hydrogen bonded molecules gives a small but important contribution. The vapor-to-liquid shifts are also considered. This shift is calculated to be negligible for (1)J(N,H) in agreement with experiment. This is rationalized as a cancellation of the geometry relaxation and pure solvent effects. For the chemical shielding, U(15 N) Calculations at the B3LYP/aug-pcS-3 show that the vapor-to-liquid chemical shift requires the explicit use of solvent molecules. Considering only one ammonia molecule in an electrostatic embedding gives a wrong sign for the chemical shift that is corrected only with the use of explicit additional molecules. The best result calculated for the vapor to liquid chemical shift Delta sigma((15)N) is -25.2 ppm, in good agreement with the experimental value of -22.6 ppm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The structure of laser glasses in the system (B(2)O(3))(0.6){(Al(2)O(3))(0.4-x)(Y(2)O(3))(x)} (0.1 <= x <= 0.25) has been investigated by means of (11)B, (27)Al, and (89)Y solid state NMR as well as Y-3d core-level X-ray photoelectron spectroscopy, (11)B magic-angle spinning (MAS) NMR spectra reveal that the majority of the boron atoms are three-coordinated, and a slight increase of four-coordinated boron content with increasing x can be noticed. (27)Al MAS NMR spectra show that the alumina species are present in the coordination states four, five and six. All of them are in intimate contact with both the three- and the four-coordinate boron species and vice versa, as indicated by (11)B/(27)Al rotational echo double resonance (REDOR) data. These results are consistent with the formation of a homogeneous, nonsegregated glass structure. For the first time, (89)Y solid state NMR has been used to probe the local environment of Y(3+) ions in a glass-forming system. The intrinsic sensitivity problem associated with (89)Y NMR has been overcome by combining the benefits of paramagnetic doping with those of signal accumulation via Carr-Purcell spin echo trains. Both the (89)Y chemical shifts and the Y-3d core level binding energies are found to be rather sensitive to the yttrium bonding state and reveal that the bonding properties of the yttrium atoms in these glasses are similar to those found in the model compounds YBO(3) and YAl(3)(BO(3))(4), Based on charge balance considerations as well as (11)B NMR line shape analyses, the dominant borate species are concluded to be meta- and pyroborate anions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a site-resolved study of stow (ms to s) motions in a protein in the solid (microcrystalline) state performed with the use of a modified version of the centerband-only detection of exchange (CODEX) NMR experiment. CODEX was originally based on measuring changes in molecular orientation by means of the chemical shift anisotropy (CSA) tensor, and in our modification, angular reorientations of internuclear vectors are observed. The experiment was applied to the study of stow (15)N-(1)H motions of the SH3 domain of chicken a-spectrin. The protein was perdeuterated with partial back-exchange of protons at labile sites. This allowed indirect (proton) detection of (15)N nuclei and thus a significant enhancement of sensitivity. The diluted proton system also made negligible proton-driven spin diffusion between (15)N nuclei, which interferes with the molecular exchange (motion) and hampers the acquisition of dynamic parameters. The experiment has shown that approximately half of the peaks in the 2D (15)N-(1)H correlation spectrum exhibit exchange in a different extent. The correlation time of the slow motion for most peaks is 1 to 3 s. This is the first NMR study of the internal dynamics of proteins in the solid state on the millisecond to second time scale with site-specific spectral resolution that provides both time-scale and geometry information about molecular motions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article reports a relaxation study in an oriented system containing spin 3/2 nuclei using quantum state tomography (QST). The use of QST allowed evaluating the time evolution of all density matrix elements starting from several initial states. Using an appropriated treatment based on the Redfield theory, the relaxation rate of each density matrix element was measured and the reduced spectral densities that describe the system relaxation were determined. All the experimental data could be well described assuming pure quadrupolar relaxation and reduced spectral densities corresponding to a superposition of slow and fast motions. The data were also analyzed in the context of Quantum Information Processing, where the coherence loss of each qubit of the system was determined using the partial trace operation. (C) 2008 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nuclear Magnetic Resonance spectroscopy (NMR) and complex impedance spectroscopy have been used to study gelatin-based polymer electrolytes plasticized with glycerol and containing lithium perchlorate. The studied samples were prepared with salt concentration of 7.9 wt% and 10.3 wt%. Ionic conductivity of about 10(-5) S/cm was obtained at room temperature for both samples. Lithium (Li-7) and proton (H-1) lineshapes and spin-lattice relaxation times were measured as a function of temperature. The Li-7 NMR relaxation results indicate that the ionic mobility in this system is comparable to those found in other plasticized polymer electrolytes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article describes a solid-state NMR (SSNMR) investigation of the influence of hydration and chemical cross-linking on the molecular dynamics of the constituents of the bovine pericardium (BP) tissues and its relation to the mechanical properties of the tissue. Samples of natural phenetylamine-diepoxide (DE)- and glutaraldehyde (GL)-fixed BP were investigated by (13)C cross-polarization SSNMR to probe the dynamics of the collagen, and the results were correlated to the mechanical properties of the tissues, probed by dynamical mechanical analysis. For samples of natural BP, the NMR results show that the higher the hydration level the more pronounced the molecular dynamics of the collagen backbone and sidechains, decreasing the tissue`s elastic modulus. In contrast, in DE- and GL-treated samples, the collagen molecules are more rigid, and the hydration seems to be less effective in increasing the collagen molecular dynamics and reducing the mechanical strength of the samples. This is mostly attributed to the presence of cross-links between the collagen plates, which renders the collagen mobility less dependent on the water absorption in chemically treated samples. Copyright (C) 2010 John Wiley & Sons, Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have studied the molecular dynamics of one of the major macromolecules in articular cartilage, chondroitin sulfate. Applying (13)C high-resolution magic-angle spinning NMR techniques, the NMR signals of all rigid macromolecules in cartilage can be suppressed, allowing the exclusive detection of the highly mobile chondroitin sulfate. The technique is also used to detect the chondroitin sulfate in artificial tissue-engineered cartilage. The tissue-engineered material that is based on matrix producing chondrocytes cultured in a collagen gel should provide properties as close as possible to those of the natural cartilage. Nuclear relaxation times of the chondroitin sulfate were determined for both tissues. Although T(1) relaxation times are rather similar, the T(2) relaxation in tissue-engineered cartilage is significantly shorter. This suggests that the motions of chondroitin sulfate in data:rat and artificial cartilage different. The nuclear relaxation times of chondroitin sulfate in natural and tissue-engineered cartilage were modeled using a broad distribution function for the motional correlation times. Although the description of the microscopic molecular dynamics of the chondroitin sulfate in natural and artificial cartilage required the identical broad distribution functions for the correlation times of motion, significant differences in the correlation times of motion that are extracted from the model indicate that the artificial tissue does not fully meet the standards of the natural ideal. This could also be confirmed by macroscopic biomechanical elasticity measurements. Nevertheless, these results suggest that NMR is a useful tool for the investigation of the quality of artificially engineered tissue. (C) 2010 Wiley Periodicals, Inc. Biopolymers 93: 520-532, 2010.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The impact of human activity on the sediments of Todos os Santos Bay in Brazil was evaluated by elemental analysis and (13)C Nuclear Magnetic Resonance ((13)C NMR). This article reports a study of six sediment cores collected at different depths and regions of Todos os Santos Bay. The elemental profiles of cores collected on the eastern side of Frades Island suggest an abrupt change in the sedimentation regime. Auto-regressive Integrated Moving Average (ARIMA) analysis corroborates this result. The range of depths of the cores corresponds to about 50 years ago, coinciding with the implantation of major onshore industrial projects in the region. Principal Component Analysis of the (13)C NMR spectra clearly differentiates sediment samples closer to the Subae estuary, which have high contents of terrestrial organic matter, from those closer to a local oil refinery. The results presented in this article illustrate several important aspects of environmental impact of human activity on this bay. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have examined the effect of the uncharged species of lidocaine (LDC) and etidocaine (EDC) on the acyl chain moiety of egg phosphatidylcholine liposomes. Changes in membrane organization caused by both anesthetics were detected through the use of EPR spin labels (5, 7 and 12 doxyl stearic acid methyl ester) or fluorescence probes (4, 6, 10, 16 pyrene-fatty acids). The disturbance caused by the LA was greater when the probes were inserted in more external positions of the acyl chain and decreased towards the hydrophobic core of the membrane. The results indicate a preferential insertion of LDC at the polar interface of the bilayer and in the first half of the acyl chain, for EDC. Additionally, 2 H NMR spectra of multilamellar liposomes composed by acyl chain-perdeutero DMPC and EPC (1:4 mol%) allowed the determination of the segmental order (S-mol) and dynamics (T-1) of the acyl chain region. In accordance to the fluorescence and EPR results, changes in molecular orientation and dynamics are more prominent if the LA preferential location is more superficial, as for LDC while EDC seems to organize the acyl chain region between carbons 2-8, which is indicative of its positioning. We propose that the preferential location of LDC and EDC inside the bilayers creates a ""transient site"", which is related to the anesthetic potency since it could modulate the access of these molecules to their binding site(s) in the voltage-gated sodium channel. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, the use of proton nuclear magnetic resonance, (1)H NMR, was fully described as a powerful tool to follow a photoreaction and to determine accurate quantum yields, so called true quantum yields (Phi(true)), when a reactant and photoproduct absorption overlap. For this, Phi(true) for the trans-cis photoisomerization process were determined for rhenium(I) polypyridyl complexes, fac-[Re(CO)(3)(NN)(trans-L)](+) (NN = 1,10-phenanthroline, phen, or 4,7-diphenyl-1,10-phenanthroline, ph(2)phen, and L = 1,2-bis(4-pyridyl) ethylene, bpe, or 4-styrylpyridine, stpy). The true values determined at 365 nm irradiation (e. g. Phi(NMR) = 0.80 for fac-[Re(CO)(3)(phen)(trans-bpe)](+)) were much higher than those determined by absorption spectral changes (Phi(UV-Vis) = 0.39 for fac-[Re(CO)(3)(phen)(trans-bpe)](+)). Phi(NMR) are more accurate in these cases due to the distinct proton signals of trans and cis-isomers, which allow the actual determination of each component concentration under given irradiation time. Nevertheless when the photoproduct or reactant contribution at the probe wavelength is negligible, one can determine Phi(true) by regular absorption spectral changes. For instance, Phi(313) nm for free ligand photoisomerization determined both by absorption and (1)H NMR variation are equal within the experimental error (bpe: Phi(UV-Vis) = 0.27, Phi(NMR) = 0.26; stpy: Phi(UV-Vis) = 0.49, Phi(NMR) = 0.49). Moreover, (1)H NMR data combined with electronic spectra allowed molar absorptivity determination of difficult to isolate cis-complexes. (C) 2009 Elsevier B. V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we show that the steady-state free precession sequence can be used to acquire (13)C high-resolution nuclear magnetic resonance spectra and applied to qualitative analysis. The analysis of brucine sample using this sequence with 60 degrees flip angle and time interval between pulses equal to 300 ms (acquisition time, 299.7 ms; recycle delay, 300 ms) resulted in spectrum with twofold enhancement in signal-to-noise ratio, when compared to standard (13)C sequence. This gain was better when a much shorter time interval between pulses (100 ms) was applied. The result obtained was more than fivefold enhancement in signal-to-noise ratio, equivalent to more than 20-fold reduction in total data recording time. However, this short time interval between pulses produces a spectrum with severe phase and truncation anomalies. We demonstrated that these anomalies can be minimized by applying an appropriate apodization function and plotting the spectrum in the magnitude mode.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We here report the preparation of supported palladium nanoparticles (NPs) stabilized by pendant phosphine groups by reacting a palladium complex containing the ligand 2-(diphenylphosphino)benzaldehyde with an amino-functionalized silica surface The Pd nanocatalyst is active for Suzuki cross-coupling reaction avoiding any addition of other sources of phosphine ligands The Pd intermediates and Pd NPs were characterized by solid-state nuclear magnetic resonance and transmission electron microscopy techniques The synthetic method was also applied to prepare magnetically recoverable Pd NPs leading to a catalyst that could be reused for up to 10 recycles In summary we gathered the advantages of heterogeneous catalysis magnetic separation and enhanced catalytic activity of palladium promoted by phosphine ligands to synthesize a new catalyst for Suzuki cross-coupling reactions The Pd NP catalyst prepared on the phosphine-functionalized support was more active and selective than a similar Pd NP catalyst prepared on an amino-functionalized support (C) 2010 Elsevier Inc All rights reserved