17 resultados para noncovariant gauge theories
Resumo:
We discuss the generalized eigenvalue problem for computing energies and matrix elements in lattice gauge theory, including effective theories such as HQET. It is analyzed how the extracted effective energies and matrix elements converge when the time separations are made large. This suggests a particularly efficient application of the method for which we can prove that corrections vanish asymptotically as exp(-(E(N+1) - E(n))t). The gap E(N+1) - E(n) can be made large by increasing the number N of interpolating fields in the correlation matrix. We also show how excited state matrix elements can be extracted such that contaminations from all other states disappear exponentially in time. As a demonstration we present numerical results for the extraction of ground state and excited B-meson masses and decay constants in static approximation and to order 1/m(b) in HQET.
Resumo:
We begin a study of torsion theories for representations of finitely generated algebras U over a field containing a finitely generated commutative Harish-Chandra subalgebra Gamma. This is an important class of associative algebras, which includes all finite W-algebras of type A over an algebraically closed field of characteristic zero, in particular, the universal enveloping algebra of gl(n) (or sl(n)) for all n. We show that any Gamma-torsion theory defined by the coheight of the prime ideals of Gamma is liftable to U. Moreover, for any simple U-module M, all associated prime ideals of M in Spec Gamma have the same coheight. Hence, the coheight of these associated prime ideals is an invariant of a given simple U-module. This implies the stratification of the category of U-modules controlled by the coheight of the associated prime ideals of Gamma. Our approach can be viewed as a generalization of the classical paper by Block (1981) [4]; it allows, in particular, to study representations of gl(n) beyond the classical category of weight or generalized weight modules. (C) 2011 Elsevier B.V. All rights reserved.