43 resultados para new method
Resumo:
Aims. In an earlier paper we introduced a new method for determining asteroid families where families were identified in the proper frequency domain (n, g, g + s) ( where n is the mean-motion, and g and s are the secular frequencies of the longitude of pericenter and nodes, respectively), rather than in the proper element domain (a, e, sin(i)) (semi-major axis, eccentricity, and inclination). Here we improve our techniques for reliably identifying members of families that interact with nonlinear secular resonances of argument other than g or g + s and for asteroids near or in mean-motion resonant configurations. Methods. We introduce several new distance metrics in the frequency space optimal for determining the diffusion in secular resonances of argument 2g - s, 3g - s, g - s, s, and 2s. We also regularize the dependence of the g frequency as a function of the n frequency (Vesta family) or of the eccentricity e (Hansa family). Results. Our new approaches allow us to recognize as family members objects that were lost with previous methods, while keeping the advantages of the Carruba & Michtchenko (2007, A& A, 475, 1145) approach. More important, an analysis in the frequency domain permits a deeper understanding of the dynamical evolution of asteroid families not always obtainable with an analysis in the proper element domain.
Resumo:
In this article, we evaluate the use of simple Lee-Goldburg cross-polarization (LG-CP) NMR experiments for obtaining quantitative information of molecular motion in the intermediate regime. In particular, we introduce the measurement of Hartmann-Hahn matching profiles for the assessment of heteronuclear dipolar couplings as well as dynamics as a reliable and robust alternative to the more common analysis of build-up curves. We have carried out dynamic spin dynamics simulations in order to test the method's sensitivity to intermediate motion and address its limitations concerning possible experimental imperfections. We further demonstrate the successful use of simple theoretical concepts, most prominently Anderson-Weiss (AW) theory, to analyze the data. We further propose an alternative way to estimate activation energies of molecular motions, based upon the acquisition of only two LG-CP spectra per temperature at different temperatures. As experimental tests, molecular jumps in imidazole methyl sulfonate, trimethylsulfoxonium iodide, and bisphenol A polycarbonate were investigated with the new method.
Resumo:
Objective. - The aim of this study was to propose a new method that allows for the estimation of critical power (CP) from non-exhaustive tests using ratings of perceived exertion (RPE). Methods. - Twenty-two subjects underwent two practice trials for ergometer and Borg 15-point scale familiarization, and adaptation to severe exhaustive exercise. After then, four exercise bouts were performed on different days for the estimation of CP and anaerobic work capacity (AWC) by linear work-time equation, and CP(15), CP(17), AWC(15) and AWC(17) were estimated using the work and time to attainment of RPE15 and RPE17 based on the Borg 15-point scale. Results. - The CP, CP(15) and CP(17) (170-177W) were not significantly different (P>0.05). However, AWC, AWC(15) and AWC(17) were all different from each other. The correlations between CP(15) and CP(17), with CP were strong (R=0.871 and 0.911, respectively), but the AWC(15) and AWC(17) were not significantly correlated with AWC. Conclusion. - Sub-maximal. RPE responses can be used for the estimation of CP from non-exhaustive exercise protocols. (C) 2009 Elsevier Masson SAS. All rights reserved.
Resumo:
The power transformer is a piece of electrical equipment that needs continuous monitoring and fast protection since it is very expensive and an essential element for a power system to perform effectively. The most common protection technique used is the percentage differential logic, which provides discrimination between an internal fault and different operating conditions. Unfortunately, there are some operating conditions of power transformers that can affect the protection behavior and the power system stability. This paper proposes the development of a new algorithm to improve the differential protection performance by using fuzzy logic and Clarke`s transform. An electrical power system was modeled using Alternative Transients Program (ATP) software to obtain the operational conditions and fault situations needed to test the algorithm developed. The results were compared to a commercial relay for validation, showing the advantages of the new method.
Resumo:
The central issue for pillar design in underground coal mining is the in situ uniaxial compressive strength (sigma (cm)). The paper proposes a new method for estimating in situ uniaxial compressive strength in coal seams based on laboratory strength and P wave propagation velocity. It describes the collection of samples in the Bonito coal seam, Fontanella Mine, southern Brazil, the techniques used for the structural mapping of the coal seam and determination of seismic wave propagation velocity as well as the laboratory procedures used to determine the strength and ultrasonic wave velocity. The results obtained using the new methodology are compared with those from seven other techniques for estimating in situ rock mass uniaxial compressive strength.
Resumo:
Several papers have reported the advantageous combination of chitosan and ceramic particles for such applications as biomimetic scaffolds, membranes, pollution remediation and gelcasting complex shapes. This work presents a novel gelcasting consolidation mechanism, based on the effects of pH changes on chitosan solubility and zeta potential of alumina particles. Unlike other chitosan-based gelcasting methods, it employs a small content of organic material (lower than 3 wt%) and does not require crosslinking agents (such as glutaraldehyde). With this new method alumina beads with 0.5-1 mm diameter could be produced, whose porosity and specific surface area could be tuned for various applications. (C) 2011 Elsevier Ltd and Techna Group S.r.l. All rights reserved.
Resumo:
In this work a new method for crosslinking ultra-thin films with potential applications in sensor systems is proposed. The films were produced by layer-by-layer (LbL) assembly using a conducting polymer, poly(o-ethoxyaniline) (POEA), alternated with a thermosetting resin, novolac-type phenolformaldehyde (PF), crosslinked by a simple thermal treatment. The PF resin served as both alternating and crosslinking agents. The films were characterized by Fourier transform infrared (FTIR) and ultraviolet-visible (UV-Vis) spectroscopy, thermogravimetry (TG), desorption, doping/dedoping cycling and electrical measurements. The results showed that film architecture and crosslinking degree can be controlled by the conditions used for film deposition (number of bilayers, polymer concentration, pH, and deposition time), and crosslinking time. Moreover, this approach offers several advantages such as fast curing time and low cost, indicating that these films can be used to produce sensors with improved stability.
Resumo:
The increasing adoption of information systems in healthcare has led to a scenario where patient information security is more and more being regarded as a critical issue. Allowing patient information to be in jeopardy may lead to irreparable damage, physically, morally, and socially to the patient, potentially shaking the credibility of the healthcare institution. Medical images play a crucial role in such context, given their importance in diagnosis, treatment, and research. Therefore, it is vital to take measures in order to prevent tampering and determine their provenance. This demands adoption of security mechanisms to assure information integrity and authenticity. There are a number of works done in this field, based on two major approaches: use of metadata and use of watermarking. However, there still are limitations for both approaches that must be properly addressed. This paper presents a new method using cryptographic means to improve trustworthiness of medical images, providing a stronger link between the image and the information on its integrity and authenticity, without compromising image quality to the end user. Use of Digital Imaging and Communications in Medicine structures is also an advantage for ease of development and deployment.
Resumo:
An important topic in genomic sequence analysis is the identification of protein coding regions. In this context, several coding DNA model-independent methods based on the occurrence of specific patterns of nucleotides at coding regions have been proposed. Nonetheless, these methods have not been completely suitable due to their dependence on an empirically predefined window length required for a local analysis of a DNA region. We introduce a method based on a modified Gabor-wavelet transform (MGWT) for the identification of protein coding regions. This novel transform is tuned to analyze periodic signal components and presents the advantage of being independent of the window length. We compared the performance of the MGWT with other methods by using eukaryote data sets. The results show that MGWT outperforms all assessed model-independent methods with respect to identification accuracy. These results indicate that the source of at least part of the identification errors produced by the previous methods is the fixed working scale. The new method not only avoids this source of errors but also makes a tool available for detailed exploration of the nucleotide occurrence.
Resumo:
Background and objective: Patients with COPD can have impaired diaphragm mechanics. A new method of assessing the mobility of the diaphragm, using ultrasound, has recently been validated. This study evaluated the relationship between pulmonary function and diaphragm mobility, as well as that between respiratory muscle strength and diaphragm mobility, in COPD patients. Methods: COPD patients with pulmonary hyperinflation (n = 54) and healthy subjects (n = 20) were studied. Patients were tested for pulmonary function, maximal respiratory pressures and diaphragm mobility using ultrasound to measure the craniocaudal displacement of the left branch of the portal vein. Results: COPD patients had less diaphragm mobility than did healthy individuals (36.5 +/- 10.9 mm vs 46.3 +/- 9.5 mm, P = 0.001). In COPD patients, diaphragm mobility correlated strongly with pulmonary function parameters that quantify air trapping (RV: r = -0.60, P < 0.001; RV/TLC: r = -0.76, P < 0.001), moderately with airway obstruction (FEV1: r = 0.55, P < 0.001; airway resistance: r = -0.32, P = 0.02) and weakly with pulmonary hyperinflation (TLC: r = -0.28, P = 0.04). No relationship was observed between diaphragm mobility and respiratory muscle strength (maximal inspiratory pressure: r = -0.11, P = 0.43; maximal expiratory pressure: r = 0.03, P = 0.80). Conclusion: The results of this study suggest that the reduction in diaphragm mobility in COPD patients is mainly due to air trapping and is not influenced by respiratory muscle strength or pulmonary hyperinflation.
Resumo:
The well established rat hepatocarcinogen N-nitrosopytrolidine (NPYR, 1) requires metabolic activation to DNA adducts to express its carcinogenic activity. Among the NPYR-DNA adducts that have been identified, the cyclic 7,8-butanoguanine adduct 2-amino-6,7,8,9-tetrahydro-9-hydroxypyrido[2,1-f]purine-4(3H)-one (6) has been quantified using moderately sensitive methods, but its levels have never been compared to those of other DNA adducts of NPYR in rat hepatic DNA. Therefore, in this study, we developed a sensitive new LC-ESI-MS/MS-SRM method for the quantitation of adduct 6 and compared its levels to those of several other NPYR-DNA adducts formed by different mechanisms. The new method was shown to be accurate and precise, with good recoveries and low fmol detection limits. Rats were treated with NPYR by gavage at doses of 46, 92, or 184 mg/kg body weight and sacrificed 16 h later. Hepatic DNA was isolated and analyzed for NPYR-DNA adducts. Adduct 6 was by far the most prevalent, with levels ranging from about 900-3000 mu mol/mol Gua and responsive to dose. Levels of adducts formed from crotonaldehyde, a metabolite of NPYR, were about 0.2-0.9 mu mol/mol dGuo, while those of adducts resulting from reaction with DNA of tetrahydrofuranyl-like intermediates were in the range of 0.01-4 mu mol/mol deoxyribonucleoside. The results of this study demonstrate that, among typical NPYR-DNA adducts, adduct 6 is easily the most abundant in hepatic DNA. Since previous studies have shown that it can be detected in the urine of NPYR-treated rats, the results suggest that it is a potential candidate as a biomarker for assessing human exposure to and metabolic activation of NPYR.
Resumo:
Motor cortex stimulation oriented by functional cortical mapping is used mainly for treating otherwise intractable neurological disorders, however. its mechanism of action remains elusive. Herein, we present a new method for functional mapping of the rat motor cortex using non-invasive transdural electrical stimulation. This method allows a non-invasive mapping of the surface of the neocortex providing a differentiation of representative motor areas. This Study may facilitate further investigation about the mechanisms mediating the effects of electrical stimulation, possibly benefiting patients who do not respond to this neuromodulation therapy. (c) 2009 Elsevier B.V. All rights reserved.
Wavelet correlation between subjects: A time-scale data driven analysis for brain mapping using fMRI
Resumo:
Functional magnetic resonance imaging (fMRI) based on BOLD signal has been used to indirectly measure the local neural activity induced by cognitive tasks or stimulation. Most fMRI data analysis is carried out using the general linear model (GLM), a statistical approach which predicts the changes in the observed BOLD response based on an expected hemodynamic response function (HRF). In cases when the task is cognitively complex or in cases of diseases, variations in shape and/or delay may reduce the reliability of results. A novel exploratory method using fMRI data, which attempts to discriminate between neurophysiological signals induced by the stimulation protocol from artifacts or other confounding factors, is introduced in this paper. This new method is based on the fusion between correlation analysis and the discrete wavelet transform, to identify similarities in the time course of the BOLD signal in a group of volunteers. We illustrate the usefulness of this approach by analyzing fMRI data from normal subjects presented with standardized human face pictures expressing different degrees of sadness. The results show that the proposed wavelet correlation analysis has greater statistical power than conventional GLM or time domain intersubject correlation analysis. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Introduction. Only about 15% of the potential candidates for lung donation are considered suitable for transplantation. A new method for ex vivo lung perfusion (EVLP) can be used to evaluate and recondition ""marginal,"" nonacceptable lungs. We have herein described an initial experience with ex vivo perfusion of 8 donor lungs deemed nonacceptable. Materials and Methods. After harvesting, the lungs were perfused ex vivo with Steen Solution, an extracellular matrix with high colloid osmotic pressure. A membrane oxygenator connected to the circuit received gas from a mixture of nitrogen and carbon dioxide, maintaining a normal mixed venous blood gas level in the perfusate. The lungs were gradually rewarmed, reperfused, and ventilated for evaluation through analyses of oxygenation capacity, pulmonary vascular resistance (PVR), lung compliance (LC), and biopsy. Results. The arterial oxygen pressure (with inspired oxygen fraction of 100%) increased from a mean of 206 mm Hg in the organ donor at the referring hospital to a mean of 498 mm Hg during the ex vivo evaluation. After 1 hour of EVLP, PVR varied from 440-1454 dynes/sec/cm(5); LC was in the range of 26-90 mL/cmH(2)O. There was no histological deterioration after 10 hours of cold ischemia and 1 hour of EVLP. Conclusions. The ex vivo evaluation model can improve oxygenation capacity of ""marginal"" lungs rejected for transplantation. It has great potential to increase lung donor availability and, possibly, reduce time on the waiting list.
Resumo:
Bioelectrical impedance vector analysis (BIVA) is a new method that is used for the routine monitoring of the variation in body fluids and nutritional status with assumptions regarding body composition values. The aim of the present study was to determine bivariate tolerance intervals of the whole-body impedance vector and to describe phase angle (PA) values for healthy term newborns aged 7-28 d. This descriptive cross-sectional study was conducted on healthy term neonates born at a low-risk public maternity. General and anthropometric neonatal data and bioelectrical impedance data (800 mu A-50 kHz) were obtained. Bivariate vector analysis was conducted with the resistance-reactance (RXc) graph method. The BIVA software was used to construct the graphs. The study was conducted on 109 neonates (52.3% females) who were born at term, adequate for gestational age, exclusively breast-fed and aged 13 (SD 3.6) d. We constructed one standard, reference, RXc-score graph and RXc-tolerance ellipses (50, 75 and 95 %) that can be used with any analyser. Mean PA was 3.14 (SD 0.43)degrees (3.12 (SD 0.39)degrees for males and 3.17 (SD 0.48)degrees for females). Considering the overlapping of ellipses of males and females with the general distribution, a graph for newborns aged 7-28 d with the same reference tolerance ellipse was defined for boys and girls. The results differ from those reported in the literature probably, in part, due to the ethnic differences in body composition. BIVA and PA permit an assessment without the need to know body weight and the prediction error of conventional impedance formulas.