32 resultados para motion sensing
Resumo:
Background/Aim: Some studies have identified an association of kidney stone formation with vitamin D receptor (VDR) or calcium-sensing receptor (CaSR) polymorphisms. We aimed to evaluate the association between these polymorphisms with urinary calcium excretion (uCa) in calcium-stone-forming patients. Methods: VDR polymorphism, detected by BsmI digestion, and 3 CaSR polymorphisms (G/T at codon 986, G/A at codon 990 and C/G at codon 1011), detected by direct sequencing, were evaluated in 100 hypercalciuric (HCa) and 101 normocalciuric (NCa) calcium-stone-forming patients. Results: The total allelic frequency of VDR polymorphism was: 16% BB, 49% Bb and 35% bb. The prevalence of bb genotype was significantly higher in the HCa when compared to the NCa group (43 vs. 27%). With respect to CaSR polymorphisms, 986S, 990G and 1011E variant alleles were detected, respectively, in 5, 4 and 3% of the whole sample and 5 CaSR haplotypes were identified: 94% ARQ (wildtype), 3% SRQ, 1.5% AGQ, 1.0% ARE and 0.5% AGE. No statistical differences have been observed between NCa and HCa with respect to these CaSR haplotypes. Conclusions: The present study suggested that bb homozygous for VDR polymorphism was overrepresented in hypercalciuric stone formers. Urinary calcium excretion was not associated with CaSR polymorphism in the present sample. Copyright (C) 2009 S. Karger AG, Basel
Resumo:
Objective: The Purpose of this study was to determine whether handedness influences bilateral shoulder range of motion in nonathlete adult women. Methods: This was an observational Study. Shoulder range of motion (flexion, abduction, horizontal adduction, extension, external and internal rotation) was passively and bilaterally measured in 50 female, right-handed, and healthy university students, ranging from 20 to 29 years of age, who were not practicing repetitive activities with the upper limbs at the time Of this study. The assessment was performed with a universal goniometer, twice for each subject by the same examiner. irst and second measurements were correlated using the intraclass correlation coefficient, which was high for all movements and ranged from 0.80 to 0.97. The Student t test and Wilcoxon test were used to compare the range of motion between the dominant and nondominant shoulders and the mean differences between the 2 sides. The effect of size vias alpha = .05. Results: There is statistically significance difference between the 2 sides when the rotational range of motion is compared the dominant shoulder presented increased external rotation (mean, 4.74 degrees; 95% confidence interval, 1.61-7.87) and decreased internal rotation (mean, 3.52 degrees; 95% confidence interval, 1.64-5.4) compared to the opposite Shoulder. Conclusion: Dominance should be considered when shoulder rotation is evaluated even in nonathlete adult women. (J Manipulative Physiol Ther 2009;32:149-153)
Resumo:
Heat shock proteins are molecular chaperones linked to a myriad of physiological functions in both prokaryotes and eukaryotes. In this study, we show that the Aspergillus nidulans hsp30 (ANID_03555.1), hsp70 (ANID_05129.1), and hsp90 (ANID_08269.1) genes are preferentially expressed in an acidic milieu, whose expression is dependent on the palA (+) background under optimal temperature for fungal growth. Heat shock induction of these three hsp genes showed different patterns in response to extracellular pH changes in the palA(+) background. However, their accumulation upon heating for 2 h was almost unaffected by ambient pH changes in the palA (-) background. The PalA protein is a member of a conserved signaling cascade that is involved in the pH-mediated regulation of gene expression. Moreover, we identified several genes whose expression at pH 5.0 is also dependent on the palA (+) background. These results reveal novel aspects of the heat- and pH-sensing networks of A. nidulans.
Resumo:
The advantages of using cryopreserved semen in equine reproduction are well known. During cryopreservationl spermatozoa undergo many changes that lead to a decrease in fertility. There is no agreement on the ideal sperm dose and concentration to maximize fertility rates. Thus, the objectives of this experiment were to evaluate sperm motion by computer-assisted analysis (CASA), sperm membrane integrity and function with fluorescence probes of cryopreserved sperm at three concentrations: 100 (C100), 200 (C200) and 400 x 10(6) sperm/mL (C400), and two straw volumes (0.50 and 0.25 mL). There was no interaction between sperm concentration and storage volume (P > .05). Sperm motion characteristics were influenced by concentration (C100 > C200 > C400; P < .05). Curvilinear velocity (VCL) in 0.25-mL straws had higher average values (P < .05). Membrane integrity and function were not changed by straw volume (P > .05). However, sperm concentration changed the percentage of cells with intact plasma membrane (C100 > C200 > C400; P < .05) and the percentage of cells with high mitochondrial membrane potential (C100 = C200; P > .05 and C400 < C100 and C200; P < .05). According to this experiment, the best freeing method was that involving 100 x 10(6) sperm/mL, regardless of straw volume.
Resumo:
We analyse the global structure of the phase space of the planar planetary 2/1 mean-motion resonance in cases where the outer planet is more massive than its inner companion. Inside the resonant domain, we show the existence of two families of periodic orbits, one associated to the librational motion of resonant angle (sigma-family) and the other related to the circulatory motion of the difference in longitudes of pericentre (Delta pi-family). The well-known apsidal corotation resonances (ACR) appear as intersections between both families. A complex web of secondary resonances is also detected for low eccentricities, whose strengths and positions are dependent on the individual masses and spatial scale of the system. The construction of dynamical maps for various values of the total angular momentum shows the evolution of the families of stable motion with the eccentricities, identifying possible configurations suitable for exoplanetary systems. For low-moderate eccentricities, several different stable modes exist outside the ACR. For larger eccentricities, however, all stable solutions are associated to oscillations around the stationary solutions. Finally, we present a possible link between these stable families and the process of resonance capture, identifying the most probable routes from the secular region to the resonant domain, and discussing how the final resonant configuration may be affected by the extension of the chaotic layer around the resonance region.
Resumo:
We study the stability regions and families of periodic orbits of two planets locked in a co-orbital configuration. We consider different ratios of planetary masses and orbital eccentricities; we also assume that both planets share the same orbital plane. Initially, we perform numerical simulations over a grid of osculating initial conditions to map the regions of stable/chaotic motion and identify equilibrium solutions. These results are later analysed in more detail using a semi-analytical model. Apart from the well-known quasi-satellite orbits and the classical equilibrium Lagrangian points L(4) and L(5), we also find a new regime of asymmetric periodic solutions. For low eccentricities these are located at (delta lambda, delta pi) = (+/- 60 degrees, -/+ 120 degrees), where delta lambda is the difference in mean longitudes and delta pi is the difference in longitudes of pericentre. The position of these anti-Lagrangian solutions changes with the mass ratio and the orbital eccentricities and are found for eccentricities as high as similar to 0.7. Finally, we also applied a slow mass variation to one of the planets and analysed its effect on an initially asymmetric periodic orbit. We found that the resonant solution is preserved as long as the mass variation is adiabatic, with practically no change in the equilibrium values of the angles.
Resumo:
This paper presents the second part in our study of the global structure of the planar phase space of the planetary three-body problem, when both planets lie in the vicinity of a 2/1 mean-motion resonance. While Paper I was devoted to cases where the outer planet is the more massive body, the present work is devoted to the cases where the more massive body is the inner planet. As before, outside the well-known Apsidal Corotation Resonances (ACR), the phase space shows a complex picture marked by the presence of several distinct regimes of resonant and non-resonant motion, crossed by families of periodic orbits and separated by chaotic zones. When the chosen values of the integrals of motion lead to symmetric ACR, the global dynamics are generally similar to the structure presented in Paper I. However, for asymmetric ACR the resonant phase space is strikingly different and shows a galore of distinct dynamical states. This structure is shown with the help of dynamical maps constructed on two different representative planes, one centred on the unstable symmetric ACR and the other on the stable asymmetric equilibrium solution. Although the study described in the work may be applied to any mass ratio, we present a detailed analysis for mass values similar to the Jupiter-Saturn case. Results give a global view of the different dynamical states available to resonant planets with these characteristics. Some of these dynamical paths could have marked the evolution of the giant planets of our Solar system, assuming they suffered a temporary capture in the 2/1 resonance during the latest stages of the formation of our Solar system.
Resumo:
The dorsal premammillary nucleus (PMd) has a critical role on the expression of defensive responses to predator odor. Anatomical evidence suggests that the PMd should also modulate memory processing through a projecting branch to the anterior thalamus. By using a pharmacological blockade of the PMd with the NMDA-receptor antagonist 2-amino-5-phosphonopentanoic acid (AP5), we were able to confirm its role in the expression of unconditioned defensive responses, and further revealed that the nucleus is also involved in influencing associative mechanisms linking predatory threats to the related context. We have also tested whether olfactory fear conditioning, using coffee odor as CS, would be useful to model predator odor. Similar to cat odor, shock-paired coffee odor produced robust defensive behavior during exposure to the odor and to the associated context. Shock-paired coffee odor also up-regulated Fos expression in the PMd, and, as with cat odor, we showed that this nucleus is involved in the conditioned defensive responses to the shock-paired coffee odor and the contextual responses to the associated environment. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The integration of nanostructured films containing biomolecules and silicon-based technologies is a promising direction for reaching miniaturized biosensors that exhibit high sensitivity and selectivity. A challenge, however, is to avoid cross talk among sensing units in an array with multiple sensors located on a small area. In this letter, we describe an array of 16 sensing units, of a light-addressable potentiometric sensor (LAPS), which was made with layer-by-Layer (LbL) films of a poly(amidomine) dendrimer (PAMAM) and single-walled carbon nanotubes (SWNTs), coated with a layer of the enzyme penicillinase. A visual inspection of the data from constant-current measurements with liquid samples containing distinct concentrations of penicillin, glucose, or a buffer indicated a possible cross talk between units that contained penicillinase and those that did not. With the use of multidimensional data projection techniques, normally employed in information Visualization methods, we managed to distinguish the results from the modified LAPS, even in cases where the units were adjacent to each other. Furthermore, the plots generated with the interactive document map (IDMAP) projection technique enabled the distinction of the different concentrations of penicillin, from 5 mmol L(-1) down to 0.5 mmol L(-1). Data visualization also confirmed the enhanced performance of the sensing units containing carbon nanotubes, consistent with the analysis of results for LAPS sensors. The use of visual analytics, as with projection methods, may be essential to handle a large amount of data generated in multiple sensor arrays to achieve high performance in miniaturized systems.
Resumo:
Radial transport in the tokamap, which has been proposed as a simple model for the motion in a stochastic plasma, is investigated. A theory for previous numerical findings is presented. The new results are stimulated by the fact that the radial diffusion coefficients is space-dependent. The space-dependence of the transport coefficient has several interesting effects which have not been elucidated so far. Among the new findings are the analytical predictions for the scaling of the mean radial displacement with time and the relation between the Fokker-Planck diffusion coefficient and the diffusion coefficient from the mean square displacement. The applicability to other systems is also discussed. (c) 2009 WILEY-VCH GmbH & Co. KGaA, Weinheim
Resumo:
The use of carbon nanotubes (CNTs) combined with other materials in nanostructured films has demonstrated their versatility in tailoring specific properties. In this study, we produced layer-by-layer (LbL) films of polyamidoamine-PAMAM-incorporating multiwalled carbon nanotubes (PAMAM-NT) alternated with nickel tetrasulfonated metallophthalocyanine (NiTsPc), in which the incorporation of CNTs enhanced the NiTsPc redox process and its electrocatalytic properties for detecting dopamine. Film growth was monitored by UV-vis spectroscopy, which pointed to an exponential growth of the multilayers, whose roughness increased with the number of bilayers according to atomic force microscopy (AFM) analysis. Strong interactions between -NH3+ terminal groups from PAMAM and -SO3- from NiTsPc were observed via infrared spectroscopy, while the micro-Raman spectra confirmed the adsorption of carbon nanotubes (CNTs) onto the LbL film containing NiTsPc. Cyclic voltammograms presented well-defined electroactivity with a redox pair at 0.86 and 0.87 V, reversibility, a charge-transfer controlled process, and high stability up to 100 cycles. The films were employed successfully in dopamine (DA) detection, with limits of detection and quantification of 10(-7) and 10(-6) mol L-1, respectively. Furthermore, films containing immobilized CNTs could distinguish between DA and its natural interferent, ascorbic acid (AA).
Resumo:
Earthen mounds with archaeological artifacts have been well known in Marajo Island since the 19th century. Their documented dimensions are impressive, e.g., up to 20m high, and with areas large as 90 ha. The mounds, locally known as lesos, impose a significant. relief on the very low-lying landscape of this region, which averages 4 to 6 in above present. sea level. These features have been traditionally interpreted as artificial constructions of the Marajoara culture, designed for defense, cemetery purposes, or escape from flooding. Here, we provide sedimentological and geomorphological data that suggest an alternative origin for these structures that is more consistent with their monumental sizes. Rather than artificial, the Marajoara tesos seem to consist of natural morphological features related to late Pleistocene and Holocene fluvial, and possibly tidal-influenced, paleochannels and paleobars that became abandoned as depositional conditions changed through dine. Although utilized and modified by the Marajoara since at least 2000 years ago, these earthen mounds contain a significant non-anthropogenically modified sedimentary substratum. Therefore, the large Marajoara tesos are not entirely artificial. Ancient, Marajoara cultures took advantage of these natural, preexisting elevated surfaces to base their communities and develop their activities, locally increasing the sizes of these fluvial landforms. This alternative interpretation suggests less cumulative labor investment, in the construction of the mounds and might. have significant implications for reconstructing the organization of the Marajoara culture. (C) 2009 Wiley Periodicals, Inc.
Resumo:
New results are established here on the phase portraits and bifurcations of the kinematic model in system (1), first presented by H.K. Wilson in [3], and by him attributed to L. Markus (unpublished). A new, self-sufficient, study which extends that of [3] and allows an essential conclusion for the applicability of the model is reported here.
Nitric oxide sensing by cytochrome c bonded to a conducting polymer modified glassy carbon electrode
Resumo:
A nitric oxide biosensor based on cytochrome c (an heme protein) covalently immobilized to poly(5-amino-1-naphthol) by using cyanuric chloride as a bridge was developed. The immobilization was studied by cyclic voltammetry and quartz crystal microbalance. The nitric oxide detection as a function of poly(5-amino-1-naphthol) amount was recorded, and the best result was obtained with the electrode prepared by 70 cycles. The sensitivity and detection limit were 0.015 mu A cm(-2)/mu mol L(-1) and 2.85 mu mol L(-1), respectively. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The interaction of a calix[4]arene-based species containing two 8-oxyquinoline chromophore pendants with hazardous metal ions has been investigated using optical absorption and fluorimetric techniques. In the presence of Hg(2+), Cd(2+), and Pb(2+) ions, there is only a small decrease of the calixarene absorption band at 283 nm. The main changes are associated with the absorption band of the 8-oxyquinoline group at 315 nm, undergoing a systematic bathochromic shift to above 350 nm. In addition, a systematic decrease of the oxyquinoline emission at lambda(em) = 392 nm (lambda(exc) = 315 nm) has been observed. These observations are consistent with the coordination of the metal ions to the quinoline groups attached to the calixarene ligand, providing a useful fluoroinophore species for analytical purposes.