174 resultados para molecular regulation


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Microarray gene expression profiling is a high-throughput system used to identify differentially expressed genes and regulation patterns, and to discover new tumor markers. As the molecular pathogenesis of meningiomas and schwannomas, characterized by NF2 gene alterations, remains unclear and suitable molecular targets need to be identified, we used low density cDNA microarrays to establish expression patterns of 96 cancer-related genes on 23 schwannomas, 42 meningiomas and 3 normal cerebral meninges. We also performed a mutational analysis of the NF2 gene (PCR, dHPLC, Sequencing and MLPA), a search for 22q LOH and an analysis of gene silencing by promoter hypermethylation (MS-MLPA). Results showed a high frequency of NF2 gene mutations (40%), increased 22q LOH as aggressiveness increased, frequent losses and gains by MLPA in benign meningiomas, and gene expression silencing by hypermethylation. Array analysis showed decreased expression of 7 genes in meningiomas. Unsupervised analyses identified 2 molecular subgroups for both meningiomas and schwannomas showing 38 and 20 differentially expressed genes, respectively, and 19 genes differentially expressed between the two tumor types. These findings provide a molecular subgroup classification for meningiomas and schwannomas with possible implications for clinical practice.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Gap junction channels, formed by connexins (Cx), are involved in the maintenance of tissue homeostasis, cell growth, differentiation, and development. Several studies have shown that Cx43 is involved in the control of wound healing in dermal tissue. However, it remains unknown whether Cx43 plays a role in the control of liver fibrogenesis. Our study investigated the roles of Cx43 heterologous deletion on carbon tetrachloride (CCl(4))-induced hepatic fibrosis in mice. We administered CCl(4) to both Cx43-deficient (Cx43(+/-)) and wild-type mice and examined hepatocellular injury and collagen deposition by histological and ultrastructural analyses. Serum biochemical analysis was performed to quantify liver injury. Hepatocyte proliferation was analyzed immunohistochemically. Protein and messenger RNA (mRNA) expression of liver connexins were evaluated using immunohistochemistry as well as immunoblotting analysis and quantitative real-time PCR. We demonstrated that Cx43(+/-) mice developed excessive liver fibrosis compared with wild-type mice after CCl(4)-induced chronic hepatic injury, with thick and irregular collagen fibers. Histopathological evaluation showed that Cx43(+/-) mice present less necroinflammatory lesions in liver parenchyma and consequent reduction of serum aminotransferase activity. Hepatocyte cell proliferation was reduced in Cx43(+/-) mice. There was no difference in Cx32 and Cx26 protein or mRNA expression in fibrotic mice. Protein expression of Cx43 increased in CCl(4)-treated mice, although with aberrant protein location on cytoplasm of perisinusoidal cells. Our results demonstrate that Cx43 plays an important role in the control and regulation of hepatic fibrogenesis. Microsc. Res. Tech. 74:421-429, 2011. (C) 2010 Wiley-Liss, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: Low molecular weight protein tyrosine phosphatases (LMW-PTPs) are a family of enzymes strongly involved in the regulation of cell growth and differentiation. Since there is no information concerning the relationship between osteoblastic differentiation and LMW-PTP expression/activity, we investigated its involvement during human osteoblast-like cells (hFOB 1.19) differentiation. It is known that LMW-PTP is regulated by an elegant redox mechanism, so we also observed how the osteoblastic differentiation affected the reduced glutathione levels. Design: hFOB 1.19 cells were cultured in DMEM/F12 up to 35 days. The osteoblast phenotype acquisition was monitored by measuring alkaline phosphatase activity and mineralized nodule formation by Von Kossa staining. LMW-PTP activity and expression were measured using the p-nitrophenylphosphate as substrate and Western blotting respectively. Crystal violet assay determined the cell number in each experimental point. Glutathione level was determined by both HPLC and DNTB assays. Results: LMW-PTP modulation was coincident with the osteoblastic differentiation biomarkers, such as alkaline phosphatase activity and presence of nodules of mineralization in Vitro. Likewise LMW-PTP, the reduced glutathione-dependent microenvironment was modulated during osteoblastic differentiation. During this process, LMW-PTP expression/activity, as well as alkaline phosphatase and glutathione increased progressively up to the 21st day (p < 0.001) of culturing, decreasing thereafter. Conclusions: Our results clearly suggest that LMW-PTP expression/activity was rigorously modulated during osteoblastic differentiation, possibly in response to the redox status of the cells, since it seems to depend on suitable levels of reduced glutathione. in this way, we pointed out LMW-PTP as an important signaling molecule in osteoblast biology and bone formation. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Given that (1) the renin-angiotensin system (RAS) is compartmentalized within the central nervous system in neurons and glia (2) the major source of brain angiotensinogen is the glial cells, (3) the importance of RAS in the central control of blood pressure, and (4) nicotine increases the probability of development of hypertension associated to genetic predisposition; the objective of the present study was to evaluate the effects of nicotine on the RAS in cultured glial cells from the brainstem and hypothalamus of Wistar Kyoto (WKY) and spontaneously hypertensive (SHR) rats. Ligand binding, real-time PCR and western blotting assays were used to compare the expression of angiotensinogen, angiotensin converting enzyme, angiotensin converting enzyme 2 and angiotensin II type1 receptors. We demonstrate, for the first time, that there are significant differences in the basal levels of RAS components between WKY and SHR rats in glia from 1-day-old rats. We also observed that nicotine is able to modulate the renin-angiotensin system in glial cells from the brainstem and hypothalamus and that the SHR responses were more pronounced than WKY ones. The present data suggest that nicotine effects on the RAS might collaborate to the development of neurogenic hypertension in SHR through modulation of glial cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The isoforms of the Na+/H+ exchanger present in T84 human colon cells were identified by functional and molecular methods. Cell pH was measured by fluorescence microscopy using the probe BCECF. Based on the pH recovery after an ammonium pulse and determination of buffering capacity of these cells, the rate of H+ extrusion (J(H)) was 3.68 mM/min. After the use of the amiloride derivative HOE-694 at 25 mu M, which inhibits the isoforms NHE1 and NHE2, there remained 43% of the above transport rate, the nature of which was investigated. Evidence of the presence of NHE1, NHE2, and NHE4 was obtained by reverse transcriptase polymerase chain reaction (RT-PCR) (mRNA) and Western blot. There was no decrease of J(H) by the NHE3 inhibitor S3226 (1 mu M) and no evidence of this isoform by RT-PCR was found. The following functional evidence for the presence of NHE4 was obtained: 25 mu M EIPA abolished J(H) entirely, but NHE4 was not inhibited at 10 mu M; substitution of Na by K increased the remainder, a property of NHE4; hypertonicity also increased this fraction of J(H). Cl--dependent NHE was not detected: in 0 Cl- solutions J(H) was increased and not reduced. In 0 Cl- cell volume decreased significantly, which was abolished by the Cl- channel blocker NPPB, indicating that the 0 Cl- effect was because of reduction of cell volume. In conclusion, T84 human colon cells contain three isoforms of the Na+/H+ exchanger, NHE1, NHE2, and NHE4, but not the Cl-dependent NHE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effect of glucose on the intracellular pH (pH(i)) recovery rate (dpH(i)/dt) and Na(+)-glucose transporter (SGLT) localization was investigated in HEK-293 cells, a cell line that expresses endogenous NHE1, NHE3, SGLT1, and SGLT2 proteins. The activity of the Na(+)/H(+) exchangers (NHEs) was evaluated by using fluorescence microscopy. The total and membrane protein expression levels were analyzed by immunoblotting. In cells cultivated in 5 mM glucose, the pH(i) recovery rate was 0.169 +/- A 0.020 (n = 6). This value did not change in response to the acute presence of glucose at 2 or 10 mM, but decreased with 25 mM glucose, an effect that was not observed with 25 mM mannitol. Conversely, the chronic effect of high glucose (25 mM) increased the pH(i) recovery rate (similar to 40%, P < 0.05), without changes in the total levels of NHE1, NHE3, or SGLT1 expression, but increasing the total cellular (similar to 50%, P < 0.05) and the plasma membrane (similar to 100%, P < 0.01) content of SGLT2. Treatment with H-89 (10(-6) M) prevented the stimulatory effect of chronic glucose treatment on the pH(i) recovery rate and SGLT2 expression in the plasma membrane. Our results indicate that the effect of chronic treatment with a high glucose concentration is associated with increased NHEs activity and plasma membrane expression of SGLT2 in a protein kinase A-dependent way. The present results reveal mechanisms of glucotoxicity and may contribute to understanding the diabetes-induced damage of this renal epithelial cell.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Contractile activity induces a marked increase in glycolytic activity and gene expression of enzymes and transporters involved in glucose metabolism in skeletal muscle. Muscle contraction also increases the production of reactive oxygen species (ROS). In this study, the effects of treatment with N-acetylcysteine (NAC), a potent antioxidant compound, on contraction-stimulated glycolysis were investigated in electrically stimulated primary rat skeletal muscle cells. The following parameters were measured: 2-[(3)H]deoxyglucose (2-DG) uptake; activities of hexokinase, phosphofructokinase (PFK), and glucose-6-phosphate dehydrogenase (G6PDH); lactate production; and expression of the glucose transporter 4 (GLUT4), hexokinase II (HKII), and PFK genes after one bout of electrical stimulation in primary rat myotubes. NAC treatment decreased ROS signal by 49% in resting muscle cells and abolished the muscle contraction-induced increase in ROS levels. In resting cells, NAC decreased mRNA and protein contents of GLUT4, mRNA content and activity of PFK, and lactate production. NAC treatment suppressed the contraction-mediated increase in 2-DG uptake; lactate production; hexokinase, PFK, and G6PDH activities; and gene expression of GLUT4. HKII, and PFK. Similar to muscle contraction, exogenous H(2)O(2) (500 nM) administration increased 2-DG uptake; lactate production; hexokinase, PFK, and G6PDH activities; and gene expression of GLUT4. HKII, and PFK. These findings support the proposition that ROS endogenously produced play an important role in the changes in glycolytic activity and gene expression of GLUT4, HKII, and PFK induced by contraction in skeletal muscle cells. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We examined the effect of Angiotensin II (Ang II) on the interaction between the Ca(2+)/CaM complex and hNHE1. Considering that calmodulin binds to NHE1 at two sites (A and B), amino acids at both sites were modified and two mutants were constructed: SA(1K3R/4E) and SB(1K3R/4E). Wild type and mutants were transfected into PS120 cells and their activity was examined by H(+) flux (J(H+)). The basal J(H+) of wild type was 4.71 +/- 0.57 (mM/min), and it was similar in both mutants. However, the mutations partially impaired the binding of CaM to hNHE1. Ang II (10(-12) and 10(-9) M) increased the J(H+) in wild type and SB. Ang II (10(-6) M) increased this parameter only in SA. Ang II (10(-9) M) maintained the expression of calmodulin in wild type or mutants, and Ang II (10(-6) M) decreased it in wild type or SA, but not in SB. Dimethyl-Bapta-AM (10(-7) M), a calcium chelator, suppressed the effect of Ang II (10(-9) M) in wild type. With Ang II (10(-6) M), Bapta failed to affect wild type or SA, but it increased the J(H+) in SB. W13 or calmidazolium chloride (10(-5) M), two distinct calmodulin inhibitors, decreased the effect of Ang II (10(-9) M) in wild type or SB. With Ang II (10(-6) M), W13 or calmidazolium chloride decreased the J(H+) in wild type or SA and increased it in SB. Thus, with Ang II (10(-12) and 10(-9) M), site A seems to be responsible for the stimulation of hNHE1 and with Ang II (10(-6) M), site B is important to maintain its basal activity. Copyright (C) 2010 S. Karger AG, Basel

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Considering that melatonin has been implicated in body weight control, this work investigated whether this effect involves the regulation of adipogenesis. 3T3-L1 preadipocytes were induced to differentiate in the absence or presence of melatonin (10(-3) m). Swiss-3T3 cells ectopically and conditionally (Tet-off system) over-expressing the 34 kDa C/EBP beta isoform (Swiss-LAP cells) were employed as a tool to assess the mechanisms of action at the molecular level. Protein markers of the adipogenic phenotype were analyzed by Western blot. At 36 hr of differentiation of 3T3-L1 preadipocytes, a reduction of PPAR gamma expression was detected followed by a further reduction, at day 4, of perilipin, aP2 and adiponectin protein expression in melatonin-treated cells. Real-time PCR analysis also showed a decrease of PPAR gamma (60%), C/EBP alpha (75%), adiponectin (30%) and aP2 (40%) mRNA expression. Finally, we transfected Swiss LAP cells with a C/EBP alpha gene promoter/reporter construct in which luciferase expression is enhanced in response to C/EBP beta activity. Culture of such transfected cells in the absence of tetracycline led to a 2.5-fold activation of the C/EBP alpha promoter. However, when treated with melatonin, the level of C/EBP alpha promoter activation by C/EBP beta was reduced by 50% (P = 0.05, n = 6). In addition, this inhibitory effect of melatonin was also reflected in the phenotype of the cells, since their capacity to accumulate lipids droplets was reduced as confirmed by the poor staining with Oil Red O. In conclusion, melatonin at a concentration of 10(-3) m works as a negative regulator of adipogenesis acting in part by inhibiting the activity of a critical adipogenic transcription factor, C/EBP beta.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

P>Many hemoglobin-derived peptides are present in mouse brain, and several of these have bioactive properties including the hemopressins, a related series of peptides that bind to cannabinoid CB1 receptors. Although hemoglobin is a major component of red blood cells, it is also present in neurons and glia. To examine whether the hemoglobin-derived peptides in brain are similar to those present in blood and heart, we used a peptidomics approach involving mass spectrometry. Many hemoglobin-derived peptides are found only in brain and not in blood, whereas all hemoglobin-derived peptides found in heart were also seen in blood. Thus, it is likely that the majority of the hemoglobin-derived peptides detected in brain are produced from brain hemoglobin and not erythrocytes. We also examined if the hemopressins and other major hemoglobin-derived peptides were regulated in the Cpefat/fat mouse; previously these mice were reported to have elevated levels of several hemoglobin-derived peptides. Many, but not all of the hemoglobin-derived peptides were elevated in several brain regions of the Cpefat/fat mouse. Taken together, these findings suggest that the post-translational processing of alpha and beta hemoglobin into the hemopressins, as well as other peptides, is up-regulated in some but not all Cpefat/fat mouse brain regions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Propolis, a natural product of plant resins, is used by the bees to seal holes in their honeycombs and protect the hive entrance. However, propolis has also been used in folk medicine for centuries. Here, we apply the power of Saccharomyces cerevisiae as a model organism for studies of genetics, cell biology, and genomics to determine how propolis affects fungi at the cellular level. Propolis is able to induce an apoptosis cell death response. However, increased exposure to propolis provides a corresponding increase in the necrosis response. We showed that cytochrome c but not endonuclease G (Nuc1p) is involved in propolis-mediated cell death in S. cerevisiae. We also observed that the metacaspase YCA1 gene is important for propolis-mediated cell death. To elucidate the gene functions that may be required for propolis sensitivity in eukaryotes, the full collection of about 4,800 haploid S. cerevisiae deletion strains was screened for propolis sensitivity. We were able to identify 138 deletion strains that have different degrees of propolis sensitivity compared to the corresponding wild-type strains. Systems biology revealed enrichment for genes involved in the mitochondrial electron transport chain, vacuolar acidification, negative regulation of transcription from RNA polymerase II promoter, regulation of macroautophagy associated with protein targeting to vacuoles, and cellular response to starvation. Validation studies indicated that propolis sensitivity is dependent on the mitochondrial function and that vacuolar acidification and autophagy are important for yeast cell death caused by propolis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Angiotensin II (Ang II) exerts an acute bimodal effect on proximal tubule NHE3: while low doses stimulate the exchanger, high doses inhibit it. In the present study, we have investigated the chronic effects of Ang II on NHE3 expression and transcriptional regulation. Treatment of a tubular epithelial cell line, OKP, with Ang II 10(-11) M significantly increased NHE protein expression and mRNA levels, without evidence of bimodal effect. No change in mRNA half-life was detected, but transient transfection studies showed a significant increase in NHE3 promoter activity. Binding sites for Sp1/Egr-1 and AP2 transcription factors of the NHE3 proximal promoter were mutated and we observed that the Sp1/Egr-1 binding site integrity is necessary for Ang II stimulatory effects. Inhibition of cytochrome P450, PI3K, PKA and MAPK pathways prevented the Ang II stimulatory effect on the NHE3 promoter activity. Taking all the results together, our data reveal that chronic Ang II treatment exerts a stimulatory effect on NHE3 expression and promoter activity. The Ang II up-regulation of the NHE3 promoter activity appears to involve the Sp1/Egr-1 binding site and the interplay of several intracellular signaling pathways. (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Estrogen Receptor (ER) is an important target for pharmaceutical design. Like other ligand-dependent transcription factors, hormone binding regulates ER transcriptional activity. Nevertheless, the mechanisms by which ligands enter and leave ERs and other nuclear receptors remain poorly understood. Here, we report results of locally enhanced sampling molecular dynamics simulations to identify dissociation pathways of two ER ligands [the natural hormone 17 beta-estradiol (E-2) and the selective ER modulator raloxifene (RAL)] from the human ER alpha ligand-binding domain in monomeric and dimeric forms. E-2 dissociation occurs via three different pathways in ER monomers. One resembles the mousetrap mechanism (Path I), involving repositioning of helix 12 (H12), others involve the separation of H8 and H11 (Path II), and a variant of this pathway at the bottom of the ligand-binding domain (Path II`). RAL leaves the receptor through Path I and a Path I variant in which the ligand leaves the receptor through the loop region between H11 and H12 (Path I`). Remarkably, ER dimerization strongly suppresses Paths II and II` for E-2 dissociation and modifies RAL escape routes. We propose that differences in ligand release pathways detected in the simulations for ER monomers and dimers provide an explanation for previously observed effects of ER quaternary state on ligand dissociation rates and suggest that dimerization may play an important, and hitherto unexpected, role in regulation of ligand dissociation rates throughout the nuclear receptor family.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PUF proteins regulate both stability and translation through sequence-specific binding to the 3` UTR of target mRNA transcripts. Binding is mediated by a conserved PUF domain, which contains eight repeats of approximately 36 amino acids each. Found in all eukaryotes, they have been related to several developmental processes. Analysis of the 25 Arabidopsis Pumilio (APUM) proteins presenting PUF repeats reveals that 12 (APUM-1 to APUM-12) have a PUF domain with 50-75% similarity to the Drosophila PUF domain. Through three-hybrid assays, we show that APUM-1 to APUM-6 can bind specifically to the Nanos response element sequence recognized by Drosophila Pumilio. Using an Arabidopsis RNA library in a three-hybrid screening, we were able to identify an APUM-binding consensus sequence. Computational analysis allowed us to identify the APUM-binding element within the 3` UTR in many Arabidopsis transcripts, even in important mRNAs related to shoot stem cell maintenance. We demonstrate that APUM-1 to APUM-6 are able to bind specifically to APUM-binding elements in the 3` UTR of WUSCHEL, CLAVATA-1, PINHEAD/ZWILLE and FASCIATA-2 transcripts. The results obtained in the present study indicate that the APUM proteins may act as regulators in Arabidopsis through an evolutionarily conserved mechanism, which may open up a new approach for investigating mRNA regulation in plants.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mitochondrial ATP-sensitive potassium channel (mK(ATP)) is important in the protective mechanism of ischemic preconditioning (IPC). The channel is reportedly sensitive to reactive oxygen and nitrogen species, and the aim of this study was to compare such species in parallel, to build a more comprehensive picture of mK(ATP) regulation. mK(ATP) activity was measured by both osmotic swelling and Tl(+) flux assays, in isolated rat heart mitochondria. An isolated adult rat cardiomyocyte model of ischemia-reperfusion (IR) injury was also used to determine the role of mK(ATP) in cardioprotection by nitroxyl. Key findings were as follows: (i) mK(ATP) was activated by O(2)(center dot-) and H(2)O(2) but not other peroxides. (ii) mK(ATP) was inhibited by NADPH. (iii) mK(ATP) was activated by S-nitrosothiols, nitroxyl, and nitrolinoleate. The latter two species also inhibited mitochondrial complex II. (iv) Nitroxyl protected cardiomyocytes against IR injury in an mK(ATP)-dependent manner. Overall, these results suggest that the mK(ATP) channel is activated by specific reactive oxygen and nitrogen species, and inhibited by NADPH. The redox modulation of mK(ATP) may be an underlying mechanism for its regulation in the context of IPC. This article is part of a Special Issue entitled: Mitochondria and Cardioprotection. (C) 2010 Elsevier B.V. All rights reserved.