34 resultados para microbial inoculation
Resumo:
Beneficial bacteria interact with plants by colonizing the rhizosphere and roots followed by further spread through the inner tissues, resulting in endophytic colonization. The major factors contributing to these interactions are not always well understood for most bacterial and plant species. It is believed that specific bacterial functions are required for plant colonization, but also from the plant side specific features are needed, such as plant genotype (cultivar) and developmental stage. Via multivariate analysis we present a quantification of the roles of these components on the composition of root-associated and endophytic bacterial communities in potato plants, by weighing the effects of bacterial inoculation, plant genotype and developmental stage. Spontaneous rifampicin resistant mutants of two bacterial endophytes, Paenibacillus sp. strain E119 and Methylobacterium mesophilicum strain SR1.6/6, were introduced into potato plants of three different cultivars (Eersteling, Robijn and Karnico). Densities of both strains in, or attached to potato plants were measured by selective plating, while the effects of bacterial inoculation, plant genotype and developmental stage on the composition of bacterial, Alphaproteobacterial and Paenibacillus species were determined by PCR-denaturing gradient gel-electrophoresis (DGGE). Multivariate analyses revealed that the composition of bacterial communities was mainly driven by cultivar type and plant developmental stage, while Alphaproteobacterial and Paenibacillus communities were mainly influenced by bacterial inoculation. These results are important for better understanding the effects of bacterial inoculations to plants and their possible effects on the indigenous bacterial communities in relation with other plant factors such as genotype and growth stage.
Resumo:
Agricultural reuse of treated sewage effluent (TSE) is an environmental and economic practice; however, little is known about its effects on the characteristics and microbial function in tropical soils. The effect of surplus irrigation of a pasture with TSE, in a period of 18 months, was investigated, considering the effect of 0% surplus irrigation with TSE as a control. In addition, the experiment consisted of three surplus treatments (25%, 50%, and 100% excess) and a nonirrigated pasture area (SE) to compare the soil microbial community level physiological profiles, using the Biolog method. The TSE application increased the average substrate consumption of the soil microbial community, based on the kinetic parameters of the average well color development curve fitting. There were no significant differences between the levels of surplus irrigation treatments. Surplus TSE pasture irrigation caused minor increases in the physiological status of the soil microbial community but no detectable damage to the pasture or soil.
Resumo:
Pseudomonas putida strain P9 is a novel competent endophyte from potato. P9 causes cultivar-dependent suppression of Phytophthora infestans. Colonization of the rhizoplane and endosphere of potato plants by P9 and its rifampin-resistant derivative P9R was studied. The purposes of this work were to follow the fate of P9 inside growing potato plants and to establish its effect on associated microbial communities. The effects of P9 and P9R inoculation were studied in two separate experiments. The roots of transplants of three different cultivars of potato were dipped in suspensions of P9 or P9R cells, and the plants were planted in soil. The fate of both strains was followed by examining colony growth and by performing PCR-denaturing gradient gel electrophoresis (PCR-DGGE). Colonies of both strains were recovered from rhizoplane and endosphere samples of all three cultivars at two growth stages. A conspicuous band, representing P9 and P9R, was found in all Pseudomonas PCR-DGGE fingerprints for treated plants. The numbers of P9R CFU and the P9R-specific band intensities for the different replicate samples were positively correlated, as determined by linear regression analysis. The effects of plant growth stage, genotype, and the presence of P9R on associated microbial communities were examined by multivariate and unweighted-pair group method with arithmetic mean cluster analyses of PCR-DGGE fingerprints. The presence of strain P9R had an effect on bacterial groups identified as Pseudomonas azotoformans, Pseudomonas veronii, and Pseudomonas syringae. In conclusion, strain P9 is an avid colonizer of potato plants, competing with microbial populations indigenous to the potato phytosphere. Bacterization with a biocontrol agent has an important and previously unexplored effect on plant-associated communities.
Resumo:
The application of tannery sludge to soils is a form of recycling; however, few studies have examined the impacts of this practice on soil microbial properties. We studied effects of two applications (2006 and 2007) of tannery sludge (with a low chromium content) on the structure of the bacterial community and on the microbial activity of soils. We fertilized an agricultural area in Rolandia, Parana state, Brazil with different doses of sludge based on total N content, which ranged from 0 to 1200 kg N ha(-1). Sludge remained on the soil surface for three months before being plowed. Soils were sampled seven times during the experiment. Bacterial community structure, assessed by denaturing gradient gel electrophoresis (DGGE), was modified by the application of tannery sludge. Soon after the first application, there was clear separation between the bacterial communities in different treatments, such that each dose of sludge was associated with a specific community. These differences remained until 300 days after application and also after the second sludge application, but 666 days after the beginning of the experiment no differences were found in the bacterial communities of the lowest doses and the control. The principal response curve (PRC) analysis showed that the first sludge application strongly stimulated biological activity even 300 days after application. The second application also stimulated activity, but at a lower magnitude and for a shorter time, given that 260 days after the second application there was no difference in biological activity among treatments. PRC also showed that the properties most influenced by the application of tannery sludge were enzymatic activities related to N cycling (asparaginase and urease). The redundancy analysis (RDA) showed that tannery sludge`s influence on microbial activity is mainly related to increases in inorganic N and soil pH. Results showed that changes in the structure of the bacterial community in the studied soils were directly related to changes of their biological activity. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The objective of this study was to determine if the effects of inoculation with Lactobacillus buchneri 40788 were detectable when applied to whole-plant corn stored in farm silos. Corn silage was randomly sampled from farms in Wisconsin, Minnesota, and Pennsylvania, and was untreated (n = 15) or treated with an inoculant (n = 16) containing L. buchneri 40788 alone or this organism combined with Pediococcus pentosaceus during May and June 2007. Corn silage that was removed from the silo face during the morning feeding was sampled, vacuum-packed, and heat sealed in polyethylene bags and shipped immediately to the University of Delaware for analyses. Silage samples were analyzed for dry matter (DM), nutrient composition, fermentation end-products, aerobic stability, and microbial populations. The population of L. buchneri in silages was determined using a real-time quantitative PCR method. Aerobic stability was measured as the time after exposure to air that it took for a 2 degrees C increase above an ambient temperature. The DM and concentrations of lactic and acetic acids were 35.6 and 34.5, 4.17 and 4.85, and 2.24 and 2.41%, respectively, for untreated and inoculated silages and were not different between treatments. The concentration of 1,2-propanediol was greater in inoculated silages (1.26 vs. 0.29%). Numbers of lactic acid bacteria determined on selective agar were not different between treatments. However, the numbers of L. buchneri based on measurements using real-time quantitative PCR analysis were greater and averaged 6.46 log cfu-equivalents/g compared with 4.89 log cfu-equivalent for inoculated silages. There were fewer yeasts and aerobic stability was greater in inoculated silages (4.75 log cfu/g and 74 h of stability) than in untreated silages (5.55 log cfu/g and 46 h of stability). This study supports the effectiveness of L. buchneri 40788 on dairy farms.
Resumo:
The effects of drying and rewetting (DRW) have been studied extensively in non-saline soils, but little is known about the impact of DRW in saline soils. An incubation experiment was conducted to determine the impact of 1-3 drying and re-wetting events on soil microbial activity and community composition at different levels of electrical conductivity in the saturated soil extract (ECe) (ECe 0.7, 9.3, 17.6 dS m(-1)). A non-saline sandy loam was amended with NaCl to achieve the three EC levels 21 days prior to the first DRW; wheat straw was added 7 days prior to the first DRW. Each DRW event consisted of 1 week drying and 1 week moist (50% of water holding capacity, WHC). After the last DRW, the soils were maintained moist until the end of the incubation period (63 days after addition of the wheat straw). A control was kept moist (50% of WHC) throughout the incubation period. Respiration rates on the day after rewetting were similar after the first and the second DRW, but significantly lower after the third DRW. After the first and second DRW, respiration rates were lower at EC17.6 compared to the lower EC levels, whereas salinity had little effect on respiration rates after the third DRW or at the end of the experiment when respiration rates were low. Compared to the continuously moist treatment, respiration rates were about 50% higher on day 15 (d15) and d29. On d44, respiration rates were about 50% higher at EC9.7 than at the other two EC levels. Cumulative respiration was increased by DRW only in the treatment with one DRW and only at the two lower EC levels. Salinity affected microbial biomass and community composition in the moist soils but not in the DRW treatments. At all EC levels and all sampling dates, the community composition in the continuously moist treatment differed from that in the DRW treatments, but there were no differences among the DRW treatments. Microbes in moderately saline soils may be able to utilise substrates released after multiple DRW events better than microbes in non-saline soil. However, at high EC (EC17.6), the low osmotic potential reduced microbial activity to such an extent that the microbes were not able to utilise substrate released after rewetting of dry soil.
Resumo:
Citrus sudden death (CSD) transmission was studied by graft-inoculation and under natural conditions. Young sweet orange trees on Rangpur rootstock were used as indicator plants. They were examined regularly for one or two characteristic markers of CSD: (i) presence of a yellow-stained layer of thickened bark on the Rangpur rootstock, and (ii) infection with the CSD-associated marafivirus. Based on these two markers, transmission of CSD was obtained, not only when budwood for graft-inoculation was taken from symptomatic, sweet orange trees on Rangpur, but also when the budwood sources were asymptomatic sweet orange trees on Cleopatra mandarin, indicating that the latter trees are symptomless carriers of the CSD agent. For natural transmission, 80 young indicator plants were planted within a citrus plot severely affected by CSD. Individual insect-proof cages were built around 40 indicator plants, and the other 40 indicator plants remained uncaged. Only two of the 40 caged indicator plants were affected by CSD, whereas 17 uncaged indicator plants showed CSD symptoms and were infected with the marafivirus. An additional 12 uncaged indicator plants became severely affected with citrus variegated chlorosis and were removed. These results strongly suggest that under natural conditions, CSD is transmitted by an aerial vector, such as an insect, and that the cages protected the trees against infection by the vector.
Resumo:
In the present work the microbial decontamination of some medicinal plants by plasma treatment using oxygen gas or a mixture of oxygen and hydrogen peroxide was investigated. The efficiency of the decontamination process was analyzed by the count of heterotropic microorganisms and pathogenic research. The results showed a reduction in the microorganism number such as 3 and 4 logarithmic cycles for ginkgo and artichoke, while it was not efficient for samples containing hard and thick cells, and mucilage, such as guarana and chamomile.
Resumo:
Wild chamomile (Matricaria chamomilla L.) is one of the most popular herbal materials with both internal and external use to cure different health disturbances. As a consequence of its origin, chamomile could carry various microbial contaminants which offer different hazards to the final consumer. Reduction of the microbial load to the in force regulation limits represents an important phase in the technological process of vegetal materials, and the electron beam treatment might be an efficient alternative to the classical methods of hygienic quality assurance. The purpose of the study was to analyze the potential application of the electron beam treatment in order to assure the microbial safety of the wild chamomile. Samples of chamomile dry inflorescences were treated in electron beam (e-beam) of 6 MeV mean energy, at room temperature and ambient pressure. Some loss of the chemical compounds with bioactive role could be noticed, but the number of microorganisms decreased as a function on the absorbed dose. Consequently, the microbial quality of studied vegetal material inflorescences was improved by e-beam. irradiation. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The genus Cryptococcus includes free-developing species, a few of which are of medical importance. Some, such as C. neoformans and C. gattii, cause infections in man frequently and C. albidus and C. laurentii cause less so. The aims of this study were to evaluate organ colonization after inoculation of C. albidus and C. laurentii isolates in normal BALB/c mice, the virulence factors (growth at 37A degrees C, capsule, melanin, proteinase, and phospholipase production) and the molecular profile (PCR-fingerprinting) of the yeasts before and after infection. The importance of different profiles (virulence and molecular) was considered in relation to the distribution in different organs and to the time intervals of isolation from organs. C. albidus was isolated from animal organs 2 to 10 days after inoculation and C. laurentii from 2 to 120 days. Most isolates of the two species kept the virulence factors showed before inoculation. The high homogeneity of the molecular profile of C. albidus and the high heterogeneity of C. laurentii were kept through the passages in animals. It is concluded that most isolates of both species were recovered from the animal organs after 5 or more days, and phenotypes were not altered by inoculation. No molecular alteration was detected and the virulence factors were not related to the time intervals before isolation from organs.
Resumo:
Introduction: Denture stomatitis is a common lesion that affects denture wearers. Its multifactorial etiology seems to depend on a complex and poorly characterized biofilm. The purpose of this study was to assess the composition of the microbial biofilm obtained from complete denture wearers with and without denture stomatitis using culture-independent methods. Methods: Samples were collected from healthy denture wearers and from patients with denture stomatitis. Libraries comprising about 600 cloned 16S ribosomal DNA (rDNA) bacterial sequences and 192 cloned eukaryotic internal transcribed spacer (ITS) region sequences, obtained by polymerase chain reactions, were analyzed. Results: The partial 16S rDNA sequences revealed a total of 82 bacterial species identified in healthy subjects and patients with denture stomatitis. Twenty-seven bacterial species were detected in both biofilms, 29 species were exclusively present in patients with denture stomatitis, and 26 were found only in healthy subjects. Analysis of the ITS region revealed the presence of Candida sp. in both biofilms. Conclusion: The results revealed the extent of the microbial flora, suggesting the existence of distinct biofilms in healthy subjects and in patients with denture stomatitis.
Resumo:
The objective of this research was to evaluate the effects of 2 levels of raw milk somatic cell count (SCC) on the composition of Prato cheese and on the microbiological and sensory changes of Prato cheese throughout ripening. Two groups of dairy cows were selected to obtain low-SCC (<200,000 cells/mL) and high-SCC (>700,000 cells/mL) milks, which were used to manufacture 2 vats of cheese. The pasteurized milk was evaluated according to the pH, total solids, fat, total protein, lactose, standard plate count, coliforms at 45 degrees C, and Salmonella spp. The cheese composition was evaluated 2 d after manufacture. Lactic acid bacteria, psychrotrophic bacteria, and yeast and mold counts were carried out after 3, 9, 16, 32, and 51 d of storage. Salmonella spp., Listeria monocytogenes, and coagulase-positive Staphylococcus counts were carried out after 3, 32, and 51 d of storage. A 2 x 5 factorial design with 4 replications was performed. Sensory evaluation of the cheeses from low- and high-SCC milks was carried out for overall acceptance by using a 9-point hedonic scale after 8, 22, 35, 50, and 63 d of storage. The somatic cell levels used did not affect the total protein and salt: moisture contents of the cheeses. The pH and moisture content were higher and the clotting time was longer for cheeses from high-SCC milk. Both cheeses presented the absence of Salmonella spp. and L. monocytogenes, and the coagulase-positive Staphylococcus count was below 1 x 10(2) cfu/g throughout the storage time. The lactic acid bacteria count decreased significantly during the storage time for the cheeses from both low- and high-SCC milks, but at a faster rate for the cheese from high-SCC milk. Cheeses from high-SCC milk presented lower psychrotrophic bacteria counts and higher yeast and mold counts than cheeses from low- SCC milk. Cheeses from low- SCC milk showed better overall acceptance by the consumers. The lower overall acceptance of the cheeses from high-SCC milk may be associated with texture and flavor defects, probably caused by the higher proteolysis of these cheeses.
Resumo:
Aim. To investigate the root canal microbiota of primary teeth with apical periodontitis and the in vivo antimicrobial effects of a calcium hydroxide/chlorhexidine paste used as root canal dressing. Design. Baseline samples were collected from 30 root canals of primary teeth with apical periodontitis. Then, the root canals were filled with a calcium hydroxide paste containing 1% chlorhexidine for 14 days and the second bacteriologic samples were taken prior to root canal filling. Samples were submitted to microbiologic culture procedure to detect root canal bacteria and processed for checkerboard DNA-DNA hybridization. Results. Baseline microbial culture revealed high prevalence and cfu number of anaerobic, black-pigmented bacteroides, Streptococcus, and aerobic microorganisms. Following root canal dressing, the overall number of cfu was dramatically diminished compared to initial contamination (P < 0.05), although prevalence did not change (P > 0.05). Of 35 probes used for checkerboard DNA-DNA hybridization, 31 (88.57%) were present at baseline, and following root canal dressing, the number of positive probes reduced to 13 (37.14%). Similarly, the number of bacterial cells diminished folowing application of calcium hydroxide/chlorhexidine root canal dressing (P = 0.006). Conclusion. Apical periodontitis is caused by a polymicrobial infection, and a calcium hydroxide/chlorhexidine paste is effective in reducing the number of bacteria inside root canals when applied as a root canal dressing.
Resumo:
Purpose: The aim of this study was to evaluate the effect of three denture hygiene methods against different microbial biofilms formed on acrylic resin specimens. Materials and methods: The set (sterile stainless steel basket and specimens) was contaminated (37 degrees C for 48 hours) by a microbial inoculum with 106 colony-forming units (CFU)/ml (standard strains: Staphylococcus aureus, Streptococcus mutans, Escherichia coli, Candida albicans, Pseudomonas aeruginosa, and Enterococcus faecalis; field strains: S. mutans, C. albicans, C. glabrata, and C. tropicalis). After inoculation, specimens were cleansed by the following methods: (1) chemical: immersion in an alkaline peroxide solution (Bonyplus tablets) for 5 minutes; (2) mechanical: brushing with a dentifrice for removable prostheses (Dentu Creme) for 20 seconds; and (3) a combination of chemical and mechanical methods. Specimens were applied onto a Petri plate with appropriate culture medium for 10 minutes. Afterward, the specimens were removed and the plates incubated at 37 degrees C for 48 hours. Results: Chemical, mechanical, and combination methods showed no significant difference in the reduction of CFU for S. aureus, S. mutans (ATCC and field strain), and P. aeruginosa. Mechanical and combination methods were similar and more effective than the chemical method for E. faecalis, C. albicans (ATCC and field strain), and C. glabrata. The combination method was better than the chemical method for E. coli and C. tropicalis, and the mechanical method showed intermediate results. Conclusion: The three denture hygiene methods showed different effects depending on the type of microbial biofilms formed on acrylic base resin specimens.
Resumo:
The present work focuses on 12 taxa of the genus Centropyxis Stein, 1857 to explore the conflict between traditional and contemporary taxonomic practices. We examined the morphology, biometry, and ecology of 2,120 Centropyxis individuals collected from Tiete River, Sao Paulo, Brazil; with these new data we studied the consistency of previously described species, varieties, and forms. We encountered transitional forms of test morphology that undermine specific and varietal distinctions for three species and nine varieties. Biometrical analyses made comparing the organisms at the species level suggest a lack of separation between Centropyxis aculeata and Centropyxis discoides, and a possible distinction for Centropyxis ecornis based on spine characteristics. However, incongruence between recent and previous surveys makes taking any taxonomic-nomenclatural actions inadvisable, as they would only add to the confusion. We suggest an explicit and objective taxonomic practice in order to enhance our taxonomic and species concepts for microbial eukaryotes. This will allow more precise inferences of taxon identity for studies in other areas.