82 resultados para mango seed cellulose
Resumo:
Enzymatic hydrolysis of brewer`s spent grain in three different forms: original (untreated), pretreated by dilute acid (cellulignin), and pretreated by a sequence of dilute acid and dilute alkali (cellulose pulp), was studied to verify the effect of hemicellulose and lignin on cellulose conversion into glucose. The hydrolysis was carried out using a commercial cellulase concentrate (Celluclast 1.5 L) in an enzyme/substrate ratio of 45 FPU/g, 2% (w/v) substrate concentration, 45 degrees C for 96 h. According to the results, the cellulose hydrolysis was affected by the presence of hemicellulose and/or lignin in the sample. The cellulose conversion ratio (defined as glucose yield + cellobiose yield) from cellulignin was 3.5-times higher than that from untreated sample, whereas from cellulose pulp such value was 4-times higher, correspondent to 91.8% (glucose yield of 85.6%). This best result was probably due to the strong modification in the material structure caused by the hemicellulose and lignin removal from the sample. As a consequence, the cellulose fibers were separated being more susceptible to the enzymatic attack. It was concluded that the lower the hemicellulose and lignin contents in the sample, the higher the efficiency of cellulose hydrolysis. (C) 2007 Elsevier Inc. All rights reserved.
Resumo:
Biopulping fundamentals, technology and mechanisms are reviewed in this article. Mill evaluation of Eucalyptus grandis wood chips biotreated by Ceriporiopsis subvermispora on a 50-tonne pilot-plant demonstrated that equivalent energy savings can be obtained in lab- and mill-scale biopulping. Some drawbacks concerning limited improvements in pulp strength and contamination of the chip pile with opportunist fungi have been observed. The use of pre-cultured wood chips as inoculum seed for the biotreatment process minimized contamination problems related to the use of blended mycelium and corn-steep liquor in the inoculation step. Alkaline wash restored part of the brightness in biopulps and marketable brightness values were obtained by one-stage bleaching with 5% H2O2 when bio-TMP pulps were under evaluation. Considering the current scenario, the understanding of biopulping mechanisms has gained renewed attention because more resistant and competitive fungal species could be selected with basis on a function-directed screening project. A series of studies aimed to elucidate structural changes in lignin during wood biodegradation by C. subvermispora had indicated that lignin depolymerization occurs during initial stages of wood biotreatment. Aromatic hydroxyls did not increase with the split of aryl-ether linkages, suggesting that the ether-cleavage-products remain as quitione-type structures. On the other hand, cellulose is more resistant to the attack by C subvermispora. MnP-initiated lipid peroxidation reactions have been proposed to explain degradation of non-phenolic lignin substructures by C subvermispora, while the lack of cellobiohydrolases and the occurrence of systems able to suppress Fenton`s reaction in the cultures have explained non-efficient cellulose degradation by this biopulping fungus. (C) 2007 Elsevier Inc. All rights reserved.
Resumo:
Brewer`s spent grain (BSG) was evaluated for bleached pulp production. Two cellulose pulps with different chemical compositions were produced by soda pulping: one from the original raw material and the other from material pretreated by dilute acid. Both of them were bleached by a totally chlorine-free sequence performed in three stages, using 5% hydrogen peroxide in the two initial, and a 0.25 N NaOH solution in the last one. Chemical composition, kappa number, viscosity, brightness and yield of bleached and unbleached pulps were evaluated. The high hemicellulose (28.4% w/w) and extractives (5.8% w/w) contents in original BSG affected the pulping and bleaching processes. However, soda pulping of acid pretreated BSG gave a cellulose-rich pulp (90.4% w/w) with low hemicellulose and extractives contents (7.9% w/w and < 3.4% w/w, respectively), which was easily bleached achieving a kappa number of 11.21, viscosity of 3.12 cp, brightness of 71.3%, cellulose content of 95.7% w/w, and residual lignin of 3.4% w/w. Alkaline and oxidative delignification of acid pretreated BSG was found as an attractive approach for producing high-purity, chlorine-free cellulose pulp.
Resumo:
The objective of the present work is to evaluate the effect of surface modification of cellulose pulp fibres on the mechanical and microstructure of fibre-cement composites. Surface modification of the cellulose pulps was performed with Methacryloxypropyltri-methoxysilane (MPTS) and Aminopropyltri-ethoxysilane (APTS) in an attempt to improve their durability into fibre-cement composites. The surface modification showed significant influence on the microstructure of the composites on the fibre-matrix interface and in the mineralization of the fibre lumen as seen by scanning electron microscopy (SEM) with back-scattered electron (BSE) detector. Accelerated ageing cycles decreased modulus of rupture (MOR) and toughness (TE) of the composites. Composites reinforced with MPTS-modified fibres presented fibres free from cement hydration products, while APTS-modified fibres presented accelerated mineralization. Higher mineralization of the fibres led to higher embrittlement of the composite after accelerated ageing cycles. These observations are therefore very useful for understanding the mechanisms of degradation of fibre-cement composites. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Recent studies have shown that partial oxidation by advanced oxidation processes (AOP) is able to transform hard-to-degrade compounds and increase their biodegradability. In this work, anaerobic treatment was followed by ozonation, UV radiation and ozonation in the presence of UV radiation, to treat bleaching effluents from a cellulose kraft Pulp plant. The anaerobic reactor (horizontal anaerobic immobilized Sludge bed, HAISB) was Used as a pretreatment to reduce the efficient organic load before applying ACIP. The ozone treatments were applied in three different pH environments (3, 8 and 10) with retention times of 10, 30, 45 and 60 min. COD and adsorbable organic halogens (AOX) removal efficiencies at the HAISB were approximately 50%, while the BOD removal efficiency reached 80%. Ozonation promoted further removal of AOX and COD so that the combined efficiency reached 96% for AOX and 70% for COD. In the oxidation process, BOD was either removed in small quantities or actually increased, as intended, so that a second biological treatment would be able to complete the treatment. The maximum increase in the BOD(5)/COD ratio (biodegradability indicator) Occurred at pH 8, reaching 104% for ozonation at a dosage of 1540 mg(O3).L(-1). Applying UV radiation alone resulted in lower values: a 34% increase ill the BOD(5)/COD ratio and a 76% AOX removal efficiency. These results indicate that the combination of anaerobic treatment with ozonation or ozonation/UV radiation improves the treatability of cellulose pulp bleaching efficients and that the resulting wastewater is suitable for further biological treatment under aerobic conditions with a low level of toxic compounds from the halogenated family.
Resumo:
All textile uses of cellulose acetate involve acetone recovery, which, because of safety issues, results in large installations, in order to work with dilute streams. This compromises the efficiency of all of the involved unit operations, in this case, acetone absorption in cold water, acetone distillation, and water chilling, making them more expensive. The present article proposes the improvement of the absorption of acetone in water, traditionally performed with sieve trays, by using structured packing instead. The advantageous implementation was enabled through the utilization of a calculation methodology based on concepts of thermodynamic equilibrium of the binary acetone/water system and empirical relations that allow the evaluation of the hydrodynamics of the proposed modification.
Resumo:
The relation between the properties of polyampholytes in aqueous solution and their adsorption behaviors on silica and cellulose surfaces was investigated. Four polyampholytes carrying different charge densities but with the same nominal ratio of positive to negative segments and two structurally similar polyelectrolytes (a polyacid and a polybase) were investigated by using quartz crystal microgravimetry using silica-coated and cellulose-coated quartz resonators. Time-resolved mass and rigidity (or viscoelasticity) of the adsorbed layer was determined from the shifts in frequency (Delta f) and energy dissipation (Delta D) of the respective resonator. Therefore, elucidation of the dynamics and extent of adsorption, as well as the conformational changes of the adsorbed macromolecules, were possible. The charge properties of the solid Surface played a crucial role in the adsorption of the studied polyampholytes, which was explained by the capability of the surface to polarize the polyampholyte at the interface. Under the same experimental conditions, the polyampholytes had a higher nominal charge density phase-separated near the interface, producing a soft, dissipative, and loosely bound layer. In the case of cellulose substrates, where adsorption was limited, electrostatic and polarization effects were concluded to be less significant.
Resumo:
Bamboos often negatively affect tree recruitment, survival, and growth, leading to arrested tree regeneration in forested habitats. Studies so far have focused on the effects of bamboos on the performance of seedlings and saplings, but the influence of bamboos on forest dynamics may start very early in the forest regeneration process by altering seed rain patterns. We tested the prediction that the density and composition of the seed rain are altered and seed limitation is higher in stands of Guadua tagoara (B or bamboo stands), a large-sized woody bamboo native from the Brazilian Atlantic Forest, compared to forest patches without bamboos (NB or non-bamboo stands). Forty 1 m(2) seed traps were set in B and NB stands, and the seed rain was monitored monthly for 1 year. The seed rain was not greatly altered by the presence of bamboos: rarefied seed species richness was higher for B stands, patterns of dominance and density of seeds were similar between stands, and differences in overall composition were slight. Seed limitation, however, was greater at B stands, likely as a resulted of reduced tree density. Despite Such reduced density, the presence of trees growing amidst and over the bamboos seems to play a key role in keeping the seeds falling in B stands because they serve as food sources for frugivores or simply as perches for them. The loss of such trees may lead to enhanced seed limitation, contributing ultimately to the self-perpetuating bamboo disturbance cycle. (C) 2008 Elsevier B,V. All rights reserved.
Resumo:
Interpretation of the anatomical structure of the ovary and fruit of the Orchidaceae family is still controversial, which makes it difficult to understand the development and dehiscence of the fruit. The genus Oncidium is polyphyletic and is currently the subject of taxonomic studies. In this study, we have investigated the anatomical development of the pericarp and seed of Oncidium flexuosum Sims to determine important diagnostic characters that, along with molecular data, can assist in defining this group. We have found a new anatomical characteristic of the family: the presence of precursor cells for fruit dehiscence, which were visible from the beginning of development and located on the outer walls of the sterile valves. In contrast with what has been observed by different authors with other species, in the mature fruit of O. flexuosum, only the endocarp of the fertile valves and a few cells near the exocarp and the vascular bundle in the sterile valves show parietal thickening, while the rest remains parenchymatous. During the development of the ovule and embryo, we have shown that the embryonic sac of this species has eight nuclei and that the embryo has a long and elaborate suspensor. (C) 2011 Elsevier GmbH. All rights reserved.
Resumo:
Interval-censored survival data, in which the event of interest is not observed exactly but is only known to occur within some time interval, occur very frequently. In some situations, event times might be censored into different, possibly overlapping intervals of variable widths; however, in other situations, information is available for all units at the same observed visit time. In the latter cases, interval-censored data are termed grouped survival data. Here we present alternative approaches for analyzing interval-censored data. We illustrate these techniques using a survival data set involving mango tree lifetimes. This study is an example of grouped survival data.
Resumo:
In greenhouse potato cultivation, mineral nutrition is one of the main factors contributing to high yields and better product quality. Knowledge about the amount of nutrients accumulated in the plants at each growing phase provides important information that helps the establishment of a more balanced fertilizer application. The objective of this research was to determine the time course of macronutrients uptake and accumulation in potato plants for seed-tuber production, grown in nutrient solution. The experiment was carried out in a greenhouse, using in vitro material from the pre-basic category of the `Atlantic` variety. The plants were collected weekly from 14 days after transplanting (DAT) until 70 DAT The experimental design was a completely randomized block with 9 treatments to sampling times and four replicates. The highest nutrient requirement in the plant shoot occurred at the periods between 28 and 56 DAT while in the tubers it was after 49 DAT The maximum accumulation sequence of macronutrients was K > N > S > Ca > P > Mg.
Resumo:
Natural forest remnants have been set as seed production fields to supply seeds of native tree species for tropical forest restoration, but the effect of different forest types on seed production has not been accessed to date for palm species. In this work, we studied seed development, yield, and quality of two palm species in different tropical forest types in SE Brazil. Seed production of palmiteiro (Euterpe edulis) and queen-palm (Syagrus romanzoffiana), which are largely used in restoration efforts due to their importance for vertebrate frugivores, were studied in natural remnants of Atlantic Rainforest, Restinga Forest, Seasonally Dry Forest, and Cerrado Forest. We studied seed development, yield, size, and germination of seed lots produced in some of these forest types, including seeds harvested in 2008, 2009, and both years. Seed yield and quality, as well as seed dry mass in 2009, were higher for palmiteiro seeds produced in the Atlantic Rainforest, while queen-palm seeds produced at the Restinga Forest showed the higher mass and yield, but the lowest physiological potential. Consequently, these natural differences of seed yield and quality have to be taken into account for establishing standards for seed commercialization and analysis, seed pricing, and seedling production in forest nurseries.
Resumo:
Xylopia aromatica is a species of the Annonaceae family, native to the Brazilian ""Cerrado"". Seeds of this species usually possess morphophysiological dormancy which makes propagation more difficult. The objective of the present study was to evaluate the efficiency of removing the aril and sarcotesta and applying plant growth regulators to overcome dormancy in X. aromatica seeds. Seeds were separated into two groups: one consisting of seeds with aril and sarcotesta and another without these two seed coat appendices. Seeds with and without these appendices were soaked for 48 hours in distilled water or Promalin (R) (gibberellin 4 [GA(4)] + gibberellin 7 [GA(7)] and cytokinin [6-Benziladenine]) solutions of 250, 500 and 1,000 mg.L(-1), and sown in ""Cerrado"" soil. Later, seeds without the aril and sarcotesta were soaked for 48 hours in distilled water. Promalin (R) or GA(4) + GA(7) solutions at same concentrations and sown in sand or ""Cerrado"" soil. The removal of the aril and sarcotesta had a positive effect on the seed germination. Application of plant growth regulators helped to overcome dormancy in X. aromatica, with the greatest percentage of seedling emergence being observed in seeds treated with Promalin at 250 and 500 mg.L(-1) then sown in sand.
Resumo:
The inadvertent inclusion of weevil-infested seeds when evaluating seed predation by vertebrates, and particularly rodents, may lead to an overestimation of predation rates, thereby confusing the roles of rodents and invertebrates as ecological filters. A study of weevils, rodents and Syagrus romanzoffiana palm seeds indicates the usefulness of X-rays to improve evaluation of invertebrate seed predation.
Resumo:
The diversity and beneficial characteristics of endophytic microorganisms have been studied in several host plants. However, information regal-ding naturally, occurring seed-associated endophytes and vertical transmission among different life-history stages of hosts is limited. Endophytic bacteria were isolated from seeds and seedlings of 10 Eucalyptus species and two hybrids. The results showed that endophytic bacteria, Such as Bacillus, Enterococcus, Paenibacillus and Methylobacterium, are vertically transferred from seeds to seedlings. In addition, the endophytic bacterium Pantoea agglomerans was tagged with the gfp gene, inoculated into seeds and further reisolated from seedlings. These results suggested it novel approach to change the profile of the plants, where the bacterium is a delivery vehicle for desired traits. This is the first report of an endophytic bacterial community residing in Eucalyptus seeds and the transmission of these bacteria from seeds to seedlings. The bacterial species reported ill this work have been described as providing benefits to host plants. Therefore, we Suggest that endophytic bacteria can be transmitted vertically from seeds to seedlings, assuring the support of the bacterial community in the host plant.