54 resultados para longitudinal dispersion
Resumo:
Limited information is available on the interactions between environmental factors and algal growth in tropical and subtropical aquatic systems. We investigated the relationships between algal biomass (measured as chlorophyll, Chl-a) and light, total phosphorus (TP) and total nitrogen (TN) in longitudinal zones of subtropical reservoirs. We studied the seasonal variation of water variables in Itupararanga Reservoir (Brazil) and compared the results with 16 other subtropical lakes and reservoirs. The longitudinal zones in Itupararanga Reservoir were considered statistically different (p 0.05, MANOVA). From the riverine zone to the dam region of the reservoir, Spearman Correlation Test suggested that light limitation and TP limitation tended to decrease and increase, respectively. Although nitrate concentrations were high (400 g/L), the Spearman coefficients between Chl-a and TN and the TN:TP ratios (11:1 TN:TP 35:1) indicated that nitrogen may be co-limiting algal growth in the studied water body. Putting Itupararanga in a regional context allowed assessment of potential influences of land use on trophic state. Within the subtropical dataset, TP explained a greater percentage of variance in Chl-a (R2 = 0.70) than TN (R2 = 0.17). The main land use type within the reservoirs drainage area significantly influenced the concentrations of TP, TN, and Chl-a (p 0.05, MANOVA), with different relationships between nutrients and chlorophyll in forested (R2 = 0.12-0.33), agricultural (R2 = 0.50-0.68) and urban (R2 = 0.09-0.64) watersheds. Comparisons with literature values and those from reservoirs with less altered watersheds indicated that Itupararanga Reservoir is reaching the mesotrophic-eutrophic boundary, and further nutrient enrichment could cause water quality degradation.
Resumo:
The fatigue crack growth properties of friction stir welded joints of 2024-T3 aluminium alloy have been studied under constant load amplitude (increasing-Delta K), with special emphasis on the residual stress (inverse weight function) effects on longitudinal and transverse crack growth rate predictions (Glinka`s method). In general, welded joints were more resistant to longitudinally growing fatigue cracks than the parent material at threshold Delta K values, when beneficial thermal residual stresses decelerated crack growth rate, while the opposite behaviour was observed next to K-C instability, basically due to monotonic fracture modes intercepting fatigue crack growth in weld microstructures. As a result, fatigue crack growth rate (FCGR) predictions were conservative at lower propagation rates and non-conservative for faster cracks. Regarding transverse cracks, intense compressive residual stresses rendered welded plates more fatigue resistant than neat parent plate. However, once the crack tip entered the more brittle weld region substantial acceleration of FCGR occurred due to operative monotonic tensile modes of fracture, leading to non-conservative crack growth rate predictions next to K-C instability. At threshold Delta K values non-conservative predictions values resulted from residual stress relaxation. Improvements on predicted FCGR values were strongly dependent on how the progressive plastic relaxation of the residual stress field was considered.
Resumo:
This paper presents a study of the stationary phenomenon of superheated or metastable liquid jets, flashing into a two-dimensional axisymmetric domain, while in the two-phase region. In general, the phenomenon starts off when a high-pressure, high-temperature liquid jet emerges from a small nozzle or orifice expanding into a low-pressure chamber, below its saturation pressure taken at the injection temperature. As the process evolves, crossing the saturation curve, one observes that the fluid remains in the liquid phase reaching a superheated condition. Then, the liquid undergoes an abrupt phase change by means of an oblique evaporation wave. Across this phase change the superheated liquid becomes a two-phase high-speed mixture in various directions, expanding to supersonic velocities. In order to reach the downstream pressure, the supersonic fluid continues to expand, crossing a complex bow shock wave. The balance equations that govern the phenomenon are mass conservation, momentum conservation, and energy conservation, plus an equation-of-state for the substance. A false-transient model is implemented using the shock capturing scheme: dispersion-controlled dissipative (DCD), which was used to calculate the flow conditions as the steady-state condition is reached. Numerical results with computational code DCD-2D vI have been analyzed. Copyright (C) 2009 John Wiley & Sons, Ltd.
Resumo:
Polymer-clay nanocomposites are materials with many interesting structures, properties, and potential applications. Microstructural evaluation of a nanocomposite is not an easy task, as clay may form hierarchical structures which may look different when observed at various magnifications under a microscope, and also as the concepts of ""intercalation"" and ""exfoliation"" are not self-sufficient to describe its morphology. In this work polymer-clay nanocomposites of polystyrene and two styrene-containing block copolymers (styrene-butadiene-styrene and styrene-ethylene/butylene-styrene) were prepared using three different techniques. Clay dispersion was evaluated by a recently developed microscopy image analysis procedure, combining the analysis of optical and transmission electron micrographs, and the characterization was complemented by X-ray diffraction and rheological measurements. The results showed better clay dispersion for both block copolymers nanocomposites, mainly due to their molecular architectures. Moreover, the techniques which showed the best results involved mixing the materials in a solvent medium. POLYM. ENG. SCI., 50:257-267, 2010. (C) 2009 Society of Plastics Engineers
Resumo:
For specific blanket and divertor applications in future fusion power reactors a replacement of presently considered reduced activation ferritic martensitic (RAFM) steels as a structural material by suitable oxide dispersion strengthened ferritic martensitic steels would allow a substantial increase of the operating temperature from similar to 823 to about 923 K. Due to this reason the RAFM-alloy ODS-Eurofer has already been developed and produced with industrial partners. In the He-cooled modular divertor concept, where temperatures above 923 K will arise, an ODS-steel with a purely ferritic matrix is advantageous, because of missing phase transitions. Due to this reason, a special ferritic ODS-steel is being manufactured as well. In this work the microstructures of these two ODS-alloy types, analysed mainly by high resolution TEM are compared, with respect to different manufacturing processes. In addition first results of high resolution EBSD scans together with determined orientation maps of the RAFM steel ODS-Eurofer will also be presented. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Magnetic energy losses and permeability have been investigated in laboratory prepared and commercial Mn-Zn sintered ferrites from quasi-static conditions up to 10 MHz. The mechanisms leading to energy dissipation, either due to domain wall displacements or magnetization rotations, have been quantitatively assessed and their respective roles have been clarified. Domain wall processes dissipate energy by pure relaxation effects, while rotations display resonant absorption of energy over a broad range of frequencies. Their specific contributions to the permeability and its frequency dispersion are thus identified and separately evaluated. It is shown that eddy currents are always too weak to appreciably contribute to the losses over the whole investigated frequency range and that rotations are the dominant magnetization and loss producing mechanisms on approaching the MHz range, as predicted by the Landau-Lifshitz-Gilbert equation with distributed anisotropy fields. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
This study examines the applicability of a micromechanics approach based upon the computational cell methodology incorporating the Gurson-Tvergaard (GT) model and the CTOA criterion to describe ductile crack extension of longitudinal crack-like defects in high pressure pipeline steels. A central focus is to gain additional insight into the effectiveness and limitations of both approaches to describe crack growth response and to predict the burst pressure for the tested cracked pipes. A verification study conducted on burst testing of large-diameter, precracked pipe specimens with varying crack depth to thickness ratio (a/t) shows the potential predictive capability of the cell approach even though both the CT model and the CTOA criterion appear to depend on defect geometry. Overall, the results presented here lend additional support for further developments in the cell methodology as a valid engineering tool for integrity assessments of pipelines with axial defects. (C) 2011 Elsevier Ltd. All rights reserved,
Resumo:
Higher order (2,4) FDTD schemes used for numerical solutions of Maxwell`s equations are focused on diminishing the truncation errors caused by the Taylor series expansion of the spatial derivatives. These schemes use a larger computational stencil, which generally makes use of the two constant coefficients, C-1 and C-2, for the four-point central-difference operators. In this paper we propose a novel way to diminish these truncation errors, in order to obtain more accurate numerical solutions of Maxwell`s equations. For such purpose, we present a method to individually optimize the pair of coefficients, C-1 and C-2, based on any desired grid size resolution and size of time step. Particularly, we are interested in using coarser grid discretizations to be able to simulate electrically large domains. The results of our optimization algorithm show a significant reduction in dispersion error and numerical anisotropy for all modeled grid size resolutions. Numerical simulations of free-space propagation verifies the very promising theoretical results. The model is also shown to perform well in more complex, realistic scenarios.
Resumo:
Mixed models have become important in analyzing the results of experiments, particularly those that require more complicated models (e.g., those that involve longitudinal data). This article describes a method for deriving the terms in a mixed model. Our approach extends an earlier method by Brien and Bailey to explicitly identify terms for which autocorrelation and smooth trend arising from longitudinal observations need to be incorporated in the model. At the same time we retain the principle that the model used should include, at least, all the terms that are justified by the randomization. This is done by dividing the factors into sets, called tiers, based on the randomization and determining the crossing and nesting relationships between factors. The method is applied to formulate mixed models for a wide range of examples. We also describe the mixed model analysis of data from a three-phase experiment to investigate the effect of time of refinement on Eucalyptus pulp from four different sources. Cubic smoothing splines are used to describe differences in the trend over time and unstructured covariance matrices between times are found to be necessary.
Resumo:
The traditional theory of price index numbers is based on the law of one price. But in the real world, we frequently observe the existence of an equilibrium price dispersion instead of one price of equilibrium. This article discusses the effects of price dispersion on two price indexes: the cost of living index and the consumer price index. With price dispersion and consumer searching for the lowest price, these indexes cannot be interpreted as deterministic indicators, but as stochastic indicators, and they can be biased if price dispersion is not taken into account. A measure for the bias of the consumer price index is proposed and the article ends with an estimation of the bias based on data obtained from the consumer price index calculated for the city of Sao Paulo, Brazil, from January 1988 through December 2004. The period analysed is very interesting, because it exhibits different inflationary environments: high levels and high volatility of the rates of inflation with great price dispersion until July 1994 and low and relatively stable rates of inflation with prices less dispersed after August 1994.
Resumo:
Background: Significant hemodynamic changes, including preload and afterload modifications, occur during the transition from the fetal to the neonatal environment. The ductus arteriosus closes, pulmonary vascular resistance decreases, and pulmonary blood flow increases. Strain rate (SR) and strain (e) have been proposed as ultrasound indices for quantifying regional wall deformation. This study was designed to determine if these indices can detect variations in regional deformation between early and late neonatal periods. Methods: Data were obtained from 30 healthy neonates (15 male). The initial study was performed at a mean age of 20.1614 hours (exam 1) and the second at 31.962.9 days (exam 2). Apical and parasternal views were used to quantify regional left ventricular (LV) and right ventricular (RV) longitudinal and radial SR and e, and systolic, early, and late diastolic values were calculated from these curves. A paired-samples t test was performed comparing the two groups. Results: Compared with exam 1, LV radial deformation showed significant reductions in peak systolic e in the basal and mid segments (51615% vs 4669%, P < .01). LV longitudinal deformation behaved similarly, showing significant peak systolic e reductions in all measured segments. Systolic SR showed reductions only in the basal and apical segments of the lateral wall and in the mid portion of the inferior wall (-1.9 +/- 0.5 vs -1.7 +/- 0.3 s(-1) and -1.9 +/- 0.4 vs -1.7 +/- 0.2 s(-1), respectively, P = .03). RV longitudinal free and inferior wall systolic SR and e values were significantly higher in exam 2. Conclusions: LV peak systolic e decreases in exam 2 were possibly due to afterload increase and preload decrease. The lower RV initial deformation indices could be attributed to increased afterload caused by physiologic pulmonary hypertension or immature RV contractile properties. SR seemed to be a more robust index than e and less influenced by preload and afterload hemodynamic alteration. (J Am Soc Echocardiogr 2010;23:294-300.)
Resumo:
Objective: To describe and compare foot anthropometry in healthy and diabetic subjects using Medial Longitudinal Arch (MLA) classificatory indexes: Arch Index (AI), Chippaux-Smirak Index (CSI) and (A) over cap Angle ((A) over cap), as well as to compare the classification of these methods in each group. Materials and Methods: Control Group (CG) composed by 21 healthy subjects and Diabetic Group (DG), with 46 diabetic neuropathy subjects. The indexes were calculated from footprints. Results: A larger proportion of flat feet was seen in DG for the three indexes (At: 32,2%, CSI: 59,7%, A: 17,5%), while highly arched feet acted oppositely. The groups were statistically different for the proportion of flat feet in (A) over cap (p=0,0080) and CSI (p=0,0000) and high feet in A (p=0,0036). There were significant differences when compared GC and GD in the three indexes: IA (p 0,0027), CSI (p=0,0064), (A) over cap (p=0,0296). Conclusion: Data showed motor and orthopedic changes originated by peripheral neuropathy, which is responsible for foot changes, causing longitudinal arch crumbling. It was seen that A Angle strongly disagreed when compared with the arch classification made by the other two indexes and therefore, its application needs care.
Resumo:
Objective: The impact of hormonal fluctuation during the menstrual cycle on the course of bipolar disorder is poorly understood. The authors determined the course of illness and time to relapse of bipolar disorder in prospectively followed women with premenstrual exacerbation. Method: Participants were 293 premenopause-age women with bipolar disorder who were followed prospectively for 1 year as part of the Systematic Treatment Enhancement Program for Bipolar Disorder. Frequency of mood episodes was compared between 191 women with premenstrual exacerbation (65.2%) and 102 women without. Among 129 women who were in recovered status at baseline, time to relapse was compared between 66 women with premenstrual exacerbation (51.2%) and 63 without. Results: During follow-up, the group with premenstrual exacerbation had more episodes (primarily depressive) than did the group without, but they were not more likely to meet criteria for rapid cycling during this period. In contrast, they were more likely to report rapid cycling retrospectively. Women with premenstrual exacerbation had a shorter time to relapse and were at greater risk for relapse, but this association was not significant after adjustment for retrospectively reported rapid cycling. Women with premenstrual exacerbation had more depressive and mood elevation symptoms overall. Conclusions: Women with bipolar disorder and premenstrual exacerbation have a worse course of illness, a shorter time to relapse, and greater symptom severity, but they are not more likely to meet criteria for rapid cycling. Premenstrual exacerbation may be a clinical marker predicting a more symptomatic and relapse-prone phenotype in reproductive-age women with bipolar disorder.
Resumo:
Objective: Using longitudinal and prospective measures of trauma during childhood, the authors assessed the risk of developing psychotic symptoms associated with maltreatment, bullying, and accidents in a nationally representative U. K. cohort of young twins. Method: Data were from the Environmental Risk Longitudinal Twin Study, which follows 2,232 twin children and their families. Mothers were interviewed during home visits when children were ages 5, 7, 10, and 12 on whether the children had experienced maltreatment by an adult, bullying by peers, or involvement in an accident. At age 12, children were asked about bullying experiences and psychotic symptoms. Children`s reports of psychotic symptoms were verified by clinicians. Results: Children who experienced maltreatment by an adult (relative risk=3.16, 95% CI=1.92-5.19) or bullying by peers (relative risk=2.47, 95% CI=1.74-3.52) were more likely to report psychotic symptoms at age 12 than were children who did not experience such traumatic events. The higher risk for psychotic symptoms was observed whether these events occurred early in life or later in childhood. The risk associated with childhood trauma remained significant in analyses controlling for children`s gender, socioeconomic deprivation, and IQ; for children`s early symptoms of internalizing or externalizing problems; and for children`s genetic liability to developing psychosis. In contrast, the risk associated with accidents was small (relative risk=1.47, 95% CI=1.02-2.13) and inconsistent across ages. Conclusions: Trauma characterized by intention to harm is associated with children`s reports of psychotic symptoms. Clinicians working with children who report early symptoms of psychosis should inquire about traumatic events such as maltreatment and bullying.
Resumo:
Background. Some neuroimaging studies have supported the hypothesis of progressive brain changes after a first episode of psychosis. We aimed to determine whether (i) first-episode psychosis patients would exhibit more pronounced brain volumetric changes than controls over time and (ii) illness course/treatment would relate to those changes. Method. Longitudinal regional grey matter volume and ventricle : brain ratio differences between 39 patients with first-episode psychosis (including schizophrenia and schizophreniform disorder) and 52 non-psychotic controls enrolled in a population-based case-control study. Results. While there was no longitudinal difference in ventricle : brain ratios between first-episode psychosis subjects and controls, patients exhibited grey matter volume changes, indicating a reversible course in the superior temporal cortex and hippocampus compared with controls. A remitting course was related to reversal of baseline temporal grey matter deficits. Conclusions. Our findings do not support the hypothesis of brain changes indicating a progressive course in the initial phase of psychosis. Rather, some brain volume abnormalities may be reversible, possibly associated with a better illness course.