111 resultados para light scattering methods
Resumo:
We show theoretically and experimentally that scattered light by thermal phonons inside a second-order nonlinear crystal is the source of additional phase noise observed in optical parametric oscillators. This additional phase noise reduces the quantum correlations and has hitherto hindered the direct production of multipartite entanglement in a single nonlinear optical system. We cooled the nonlinear crystal and observed a reduction in the extra noise. Our treatment of this noise can be successfully applied to different systems in the literature.
Resumo:
We report the first observation of high wave vector magnon excitations in a ferromagnetic monolayer. Using spin-polarized electron energy loss spectroscopy, we observed the magnon dispersion in one atomic layer (ML) of Fe on W(110) at 120 K. The magnon energies are small in comparison to the bulk and surface Fe(110) excitations. We find an exchange parameter and magnetic anisotropy similar to that from static measurements. Our results are in sharp contrast to theoretical calculations, indicating that the present understanding of magnetism of the ML Fe requires considerable revision.
Resumo:
Cooperative scattering of light by an extended object such as an atomic ensemble or a dielectric sphere is fundamentally different from scattering from many pointlike scatterers such as single atoms. Homogeneous distributions tend to scatter cooperatively, whereas fluctuations of the density distribution increase the disorder and suppress cooperativity. In an atomic cloud, the amount of disorder can be tuned via the optical thickness, and its role can be studied via the radiation force exerted by the light on the atomic cloud. Monitoring cold (87)Rb atoms released from a magneto-optical trap, we present the first experimental signatures of radiation force reduction due to cooperative scattering. The results are in agreement with an analytical expression interpolating between the disorder and the cooperativity-dominated regimes.
Resumo:
Background: Extracellular vesicles in yeast cells are involved in the molecular traffic across the cell wall. In yeast pathogens, these vesicles have been implicated in the transport of proteins, lipids, polysaccharide and pigments to the extracellular space. Cellular pathways required for the biogenesis of yeast extracellular vesicles are largely unknown. Methodology/Principal Findings: We characterized extracellular vesicle production in wild type (WT) and mutant strains of the model yeast Saccharomyces cerevisiae using transmission electron microscopy in combination with light scattering analysis, lipid extraction and proteomics. WT cells and mutants with defective expression of Sec4p, a secretory vesicle-associated Rab GTPase essential for Golgi-derived exocytosis, or Snf7p, which is involved in multivesicular body (MVB) formation, were analyzed in parallel. Bilayered vesicles with diameters at the 100-300 nm range were found in extracellular fractions from yeast cultures. Proteomic analysis of vesicular fractions from the cells aforementioned and additional mutants with defects in conventional secretion pathways (sec1-1, fusion of Golgi-derived exocytic vesicles with the plasma membrane; bos1-1, vesicle targeting to the Golgi complex) or MVB functionality (vps23, late endosomal trafficking) revealed a complex and interrelated protein collection. Semi-quantitative analysis of protein abundance revealed that mutations in both MVB- and Golgi-derived pathways affected the composition of yeast extracellular vesicles, but none abrogated vesicle production. Lipid analysis revealed that mutants with defects in Golgi-related components of the secretory pathway had slower vesicle release kinetics, as inferred from intracellular accumulation of sterols and reduced detection of these lipids in vesicle fractions in comparison with WT cells. Conclusions/Significance: Our results suggest that both conventional and unconventional pathways of secretion are required for biogenesis of extracellular vesicles, which demonstrate the complexity of this process in the biology of yeast cells.
Resumo:
This paper presents the characterization of poly(aniline) (PANI) and poly(methyl methacrylate) (PMMA) coatings obtained by mixing PANI with PMMA aqueous dispersions (latex particles). These dispersions were characterized by using dynamic light scattering for sizing, zeta-potential analysis and thermal analysis. PMMA and PANI/PMMA dispersions show negative charged particles with zeta potential greater than |40| mV, a zeta-average diameter of 64 nm for pure PMMA and a bi-modal particle-size distribution centered at 45 and 120 nm for a mixture with 25% w/w of PANI. Films obtained by casting were characterized by using scanning electron microscopy and they show a conductivity increase upon PANI content reaching a value of 1 mS cm(-1) for a film with 25% w/w of PANI. In addition, Raman spectroscopy have shown the presence of the conducting form of PANI in the films and cyclic voltammetry experiments corroborated that they are electroactive in both acid and neutral solutions.
Resumo:
Short-time dynamics of ionic liquids has been investigated by low-frequency Raman spectroscopy (4 < omega < 100 cm(-1)) within the supercooled liquid range. Raman spectra are reported for ionic liquids with the same anion, bis(trifluoromethylsulfonyl)imide, and different cations: 1-butyl-3-methylimidazolium, 1-hexyl-3-methylimidazolium, 1-butyl-1-methylpiperidinium, trimethylbutylammonium, and tributylmethylammonium. It is shown that low-frequency Raman spectroscopy provides similar results as optical Kerr effect (OKE) spectroscopy, which has been used to study intermolecular vibrations in ionic liquids. The comparison of ionic liquids containing aromatic and non-aromatic cations identifies the characteristic feature in Raman spectra usually assigned to librational motion of the imidazolium ring. The strength of the fast relaxations (quasi-elastic scattering, QES) and the intermolecular vibrational contribution (boson peak) of ionic liquids with non-aromatic cations are significantly lower than imidazolium ionic liquids. A correlation length assigned to the boson peak vibrations was estimated from the frequency of the maximum of the boson peak and experimental data of sound velocity. The correlation length related to the boson peak (similar to 19 angstrom) does not change with the length of the alkyl chain in imidazolium cations, in contrast to the position of the first-sharp diffraction peak observed in neutron and X-ray scattering measurements of ionic liquids. The rate of change of the QES intensity in the supercooled liquid range is compared with data of excess entropy, free volume, and mean-squared displacement recently reported for ionic liquids. The temperature dependence of the QES intensity in ionic liquids illustrates relationships between short-time dynamics and long-time structural relaxation that have been proposed for glass-forming liquids. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3604533]
Resumo:
The influence of granulometry and organic treatment of a Brazilian montmorillonite (MMT) clay on the synthesis and properties of poly(styrene-co-n-butyl acrylate)/layered silicate nanocomposites was studied. Hybrid latexes of poly(styrene-co-butyl acrylate)/MMT were synthesized via miniemulsion polymerization using either sodium or organically modified MMT. Five clay granulometries ranging from clay particles smaller than 75 mu m to colloidal size were selected. The size of the clay particles was evaluated by Specific surface area measurements (BET). Cetyl trimethyl ammonium chloride was used as an organic modifier to enhance the clay compatibility with the monomer phase before polymerization and to improve the clav distribution and dispersion within the polymeric matrix after polymerization. The sodium and organically modified natural clays as well as the composites were characterized by X-ray diffraction analysis. The latexes were characterized by dynamic light scattering. The mechanical, thermal, and rheological properties of the composites obtained were characterized by dynamical-mechanical analysis, thermogravimetry, and small amplitude oscillatory, shear tests, respectively. The results showed that smaller the size of the organically modified MMT, the higher the degree of exfoliation of nanoplatelets. Hybrid latexes in presence of Na-MMT resulted in materials with intercalated structures. (C) 2009 Wiley, Periodicals, Inc. J Appl Polym Sci 112: 1949-1958, 2009
Resumo:
In the present work, the sensitivity of NIR spectroscopy toward the evolution of particle size was studied during emulsion homopolymerization of styrene (Sty) and emulsion copolymerization of vinyl acetate-butyl acrylate conducted in a semibatch stirred tank and a tubular pulsed sieve plate reactor, respectively. All NIR spectra were collected online with a transflectance probe immersed into the reaction medium. The spectral range used for the NIR monitoring was from 9 500 to 13 000 cm(-1), where the absorbance of the chemical components present is minimal and the changes in the NIR spectrum can be ascribed to the effects of light scattering by the polymer particles. Off-line measurements of the average diameter of the polymer particles by DLS were used as reference values for the development of the multi-variate NIR calibration models based on partial least squares. Results indicated that, in the spectral range studied, it is possible to monitor the evolution of the average size of the polymer particles during emulsion polymerization reactions. The inclusion of an additional spectral range, from 5 701 to 6 447 cm(-1), containing information on absorbances (""chemical information"") in the calibration models was also evaluated.
Resumo:
Experimental results for the activity of water in aqueous solutions of 10 single polyelectrolytes (two polysodium acrylates, two polysodium methacrylates, three polyammonium acrylates, two polysodium ethylene sulfonates, and one polysodium styrene sulfonate) at (298.2 and 323.2) K are reported. The isopiestic method was employed in these experiments with aqueous solutions of sodium chloride as references. The polyelectrolytes were characterized by three averaged molecular masses determined by gel permeation chromatography. Furthermore, the density and the refractive index increments of the aqueous polyelectrolyte solutions are reported. Although a similar pattern for the activity of water was observed for all systems (i.e., the osmotic coefficient increases with rising polyelectrolyte concentration), the experimental results show that this property depends on the monomer type as well as on the size of the polymer chain. The temperature (varied from (298.2 to 323.2) K) has only a small influence on the activity of water.
Resumo:
Mitochondrial membrane carriers containing proline and cysteine, such as adenine nucleotide translocase (ANT), are potential targets of cyclophilin D (CyP-D) and potential Ca(2+)-induced permeability transition pore (PTP) components or regulators; CyP-D, a mitochondrial peptidyl-prolyl cis-trans isomerase, is the probable target of the PTP inhibitor cyclosporine A (CsA). In the present study, the impact of proline isomerization (from trans to cis) on the mitochondrial membrane carriers containing proline and cysteine was addressed using ANT as model. For this purpose, two different approaches were used: (i) Molecular dynamic (MD) analysis of ANT-Cys(56) relative mobility and (ii) light scattering techniques employing rat liver isolated mitochondria to assess both Ca(2+)-induced ANT conformational change and mitochondrial swelling. ANT-Pro(61) isomerization increased ANT-Cys(56) relative mobility and, moreover, desensitized ANT to the prevention of this effect by ADP. In addition, Ca(2+) induced ANT ""c"" conformation and opened PTP; while the first effect was fully inhibited, the second was only attenuated by CsA or ADP. Atractyloside (ATR), in turn, stabilized Ca(2+)-induced ANT ""c"" conformation, rendering the ANT conformational change and PTP opening less sensitive to the inhibition by CsA or ADP. These results suggest that Ca(2+) induces the ANT ""c"" conformation, apparently associated with PTP opening, but requires the CyP-D peptidyl-prolyl cis-trans isomerase activity for sustaining both effects.
Resumo:
The (-)-hinokinin display high activity against Trypanosoma cruzi in vitro and in vivo. (-)-Hinokinin-loaded poly(d,l-lactide-co-glycolide) microparticles were prepared and characterized in order to protect (-)-hinokinin of biological interactions and promote its sustained release for treatment of Chagas disease. The microparticles contain (-)-hinokinin were prepared by the classical method of the emulsion/solvent evaporation. The scanning electron microscopy, light-scattering analyzer were used to study the morphology and particle size, respectively. The encapsulation efficiency was determined, drug release studies were kinetically evaluated, and the trypanocidal effect was evaluated in vivo. (-)-Hinokinin-loaded microparticles obtained showed a mean diameter of 0.862 A mu m with smooth surface and spherical shape. The encapsulation efficiency was 72.46 A +/- 2.92% and developed system maintained drug release with Higuchi kinetics. The preparation method showed to be suitable, since the morphological characteristics, encapsulation efficiency, and in vitro release profile were satisfactory. In vivo assays showed significant reduction of mice parasitaemia after administration of (-)-hinokinin-loaded microparticles. Thus, the developed microparticles seem to be a promising system for sustained release of (-)-hinokinin for treatment of Chagas disease.
Resumo:
The goal of this work was to study the liquid crystalline structure of a nanodispersion delivery system intended to be used in photodynamic therapy after loading with photosensitizers (PSs) and additives such as preservatives and thickening polymers. Polarized light microscopy and light scattering were performed on a standard nanodispersion in order to determine the anisotropy of the liquid crystalline structure and the mean diameter of the nanoparticles, respectively. Small angle X-ray diffraction (SAXRD) was used to verify the influence of drug loading and additives on the liquid crystalline structure of the nanodispersions. The samples, before and after the addition of PSs and additives, were stable over 90 days, as verified by dynamic light scattering. SAXRD revealed that despite the alteration observed in some of the samples analyzed in the presence of photosensitizing drugs and additives, the hexagonal phase still remained in the crystalline phase. (C) 2011 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 100: 2849-2857, 2011
Resumo:
A surfactant-mediated solution route for the obtainment of nanosized rare-earth orthophosphates of different compositions (LaPO(4):Eu(3+), (Y,Gd)PO(4):Eu(3+),LaPO(4):Tm(3+), YPO(4):Tm(3+), and YbPO(4):Er(3+)) is presented, and the implications of the morphology control on the solids properties are discussed. The solids are prepared in water-in-heptane microemulsions, using cetyltrimethylammonium bromide and 1-butanol as the surfactant and cosurfactant; the alteration of the starting microemulsion composition allows the obtainment of similar to 30 nm thick nanorods with variable length. The morphology and the structure of the solids were evaluated through scanning electron microscopy and through powder X-ray diffractometry; dynamic light scattering and thermal analyses were also performed. The obtained materials were also characterized through vibrational (FTIR) and luminescence spectroscopy (emission/excitation, luminescence lifetimes, chromaticity, and quantum efficiency), where the red, blue, and upconversion emissions of the prepared phosphors were evaluated.
Resumo:
10-(Octyloxy) decyl-2-(trimethylammonium) ethyl phosphate (ODPC) is an alkylphospholipid that can interact with cell membranes because of its amphiphilic character. We describe here the interaction of ODPC with liposomes and its toxicity to leukemic cells with an ED-50 of 5.4, 5.6 and 2.9 pM for 72 h of treatment for inhibition of proliferation of NB4, U937 and K562 cell lines, respectively, and lack of toxicity to normal hematopoietic progenitor cells at concentrations up to 25 pM. The ED-50 for the non-malignant HEK-293 and primary human umbilical vein endothelial cells (HUVEC) was 63.4 and 60.7 mu M, respectively. The critical micellar concentration (CMC) of ODPC was 200 mu M. Dynamic light scattering indicated that dipalmitoylphosphatidylcholine (DPPC) liposome size was affected only above the CMC of ODPC. Differential calorimetric scanning (DCS) of liposomes indicated a critical transition temperature (T(c)) of 41.5 degrees C and an enthalpy (Delta H) variation of 7.3 kcal mol(-1). The presence of 25 mu M ODPC decreased T(c) and Delta H to 393 degrees C and 4.7 kcal mol(-1), respectively. ODPC at 250 mu M destabilized the liposomes (36.3 degrees C. 0.46 kcal mol(-1)). Kinetics of 5(6)-carboxyfluorescein (CF) leakage from different liposome systems indicated that the rate and extent of CF release depended on liposome composition and ODPC concentration and that above the CMC it was instantaneous. Overall, the data indicate that ODPC acts on in vitro membrane systems and leukemia cell lines at concentrations below its CMC, suggesting that it does not act as a detergent and that this effect is dependent on membrane composition. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Lipid microspheres (LM) are excellent drug delivery or vaccines adjuvant systems and are relatively stable. The aim of this work is to develop and characterize a system that is able to encapsulate and present antigenic membrane proteins from Leishmania amazonensis. Membrane proteins are important for vaccine`s formulation because these proteins come in contact with the host cell first, triggering the cell mediated immune response. This is a useful tool to avoid or inactivate the parasite invasion. The LM are constituted by soybean oil (SO), dipalmitoylphosphatidilcholine (DPPC), cholesterol and solubilized protein extract (SPE). The particles formed presented an average diameter of 200 run, low polydispersion and good stability for a period of 30 days, according to dynamic light scattering assays. Isopycnic density gradient centrifugation of LM-protein showed that proteins and lipids floated in the sucrose gradient (5-50%w/v) suggesting that the LM-protein preparation was homogeneous and that the proteins are interacting with the system. The results show that 85% of SPE proteins were encapsulated in the LM. Studies of cellular viability of murine peritoneal macrophages show that our system does not present cytotoxic effect for the macrophages and still stimulates their NO production (which makes its application as a vaccine adjuvant possible). LM-protein loaded with antigenic membrane proteins from L. amazonensis seems to be a promising vaccine system for immunization against leishmaniasis. (C) 2009 Elsevier Inc. All rights reserved.