37 resultados para korrelation fermion elektron hubbard dmft
Resumo:
In extensions of the standard model with a heavy fourth generation, one important question is what makes the fourth-generation lepton sector, particularly the neutrinos, so different from the lighter three generations. We study this question in the context of models of electroweak symmetry breaking in warped extra dimensions, where the flavor hierarchy is generated by choosing the localization of the zero-mode fermions in the extra dimension. In this setup the Higgs sector is localized near the infrared brane, whereas the Majorana mass term is localized at the ultraviolet brane. As a result, light neutrinos are almost entirely Majorana particles, whereas the fourth-generation neutrino is mostly a Dirac fermion. We show that it is possible to obtain heavy fourth-generation leptons in regions of parameter space where the light neutrino masses and mixings are compatible with observation. We study the impact of these bounds, as well as the ones from lepton flavor violation, on the phenomenology of these models.
Resumo:
In this work we present an analysis of the one-loop Slavnov-Taylor identities in noncommutative QED(4). The vectorial fermion-photon and the triple photon vertex functions were studied, with the conclusion that no anomalies arise.
Resumo:
We show that CPT-even aetherlike Lorentz-breaking actions, for the scalar and electromagnetic fields, are generated via their appropriate Lorentz-breaking coupling to spinor fields, in three, four, and five space-time dimensions. Besides, we also show that aetherlike terms for the spinor field can be generated as a consequence of the same couplings. We discuss the dispersion relations in the theories with aetherlike Lorentz-breaking terms and find the tree-level effective (Breit) potential for fermion scattering and the one-loop effective potential corresponding to the action of the scalar field.
Resumo:
This is a more detailed version of our recent paper where we proposed, from first principles, a direct method for evaluating the exact fermion propagator in the presence of a general background field at finite temperature. This can, in turn, be used to determine the finite temperature effective action for the system. As applications, we discuss the complete one loop finite temperature effective actions for 0+1 dimensional QED as well as for the Schwinger model in detail. These effective actions, which are derived in the real time (closed time path) formalism, generate systematically all the Feynman amplitudes calculated in thermal perturbation theory and also show that the retarded (advanced) amplitudes vanish in these theories. Various other aspects of the problem are also discussed in detail.
Resumo:
We study extensions of the standard model with a strongly coupled fourth generation. This occurs in models where electroweak symmetry breaking is triggered by the condensation of at least some of the fourth-generation fermions. With focus on the phenomenology at the LHC, we study the pair production of fourth-generation down quarks, D(4). We consider the typical masses that could be associated with a strongly coupled fermion sector, in the range (300-600) GeV. We show that the production and successive decay of these heavy quarks into final states with same-sign dileptons, trileptons, and four leptons can be easily seen above background with relatively low luminosity. On the other hand, in order to confirm the presence of a new strong interaction responsible for fourth-generation condensation, we study its contribution to D(4) pair production, and the potential to separate it from standard QCD-induced heavy quark production. We show that this separation might require large amounts of data. This is true even if it is assumed that the new interaction is mediated by a massive colored vector boson, since its strong coupling to the fourth generation renders its width of the order of its mass. We conclude that, although this class of models can be falsified at early stages of the LHC running, its confirmation would require high integrated luminosities.
Resumo:
We analyze the breaking of Lorentz invariance in a 3D model of fermion fields self-coupled through four-fermion interactions. The low-energy limit of the theory contains various submodels which are similar to those used in the study of graphene or in the description of irrational charge fractionalization.
Resumo:
Bilayer graphene nanoribbons with zigzag termination are studied within the tight-binding model. We also include single-site electron-electron interactions via the Hubbard model within the unrestricted Hartree-Fock approach. We show that either the interactions between the outermost edge atoms or the presence of a magnetic order can cause a splitting of the zero-energy edge states. Two kinds of edge alignments are considered. For one kind of edge alignment (?) the system is nonmagnetic unless the Hubbard parameter U becomes greater than a critical value Uc. For the other kind of edge alignment (?) the system is magnetic for any U>0. Our results agree very well with ab initio density functional theory calculations.
Resumo:
We adopt the Dirac model for graphene and calculate the Casimir interaction energy between a plane suspended graphene sample and a parallel plane perfect conductor. This is done in two ways. First, we use the quantum-field-theory approach and evaluate the leading-order diagram in a theory with 2+1-dimensional fermions interacting with 3+1-dimensional photons. Next, we consider an effective theory for the electromagnetic field with matching conditions induced by quantum quasiparticles in graphene. The first approach turns out to be the leading order in the coupling constant of the second one. The Casimir interaction for this system appears to be rather weak. It exhibits a strong dependence on the mass of the quasiparticles in graphene.
Resumo:
In integrable one-dimensional quantum systems an infinite set of local conserved quantities exists which can prevent a current from decaying completely. For cases like the spin current in the XXZ model at zero magnetic field or the charge current in the attractive Hubbard model at half filling, however, the current operator does not have overlap with any of the local conserved quantities. We show that in these situations transport at finite temperatures is dominated by a diffusive contribution with the Drude weight being either small or even zero. For the XXZ model we discuss in detail the relation between our results, the phenomenological theory of spin diffusion, and measurements of the spin-lattice relaxation rate in spin chain compounds. Furthermore, we study the Haldane-Shastry model where a conserved spin current exists.
Resumo:
A combined analytical and numerical study is performed of the mapping between strongly interacting fermions and weakly interacting spins, in the framework of the Hubbard, t-J, and Heisenberg models. While for spatially homogeneous models in the thermodynamic limit the mapping is thoroughly understood, we here focus on aspects that become relevant in spatially inhomogeneous situations, such as the effect of boundaries, impurities, superlattices, and interfaces. We consider parameter regimes that are relevant for traditional applications of these models, such as electrons in cuprates and manganites, and for more recent applications to atoms in optical lattices. The rate of the mapping as a function of the interaction strength is determined from the Bethe-Ansatz for infinite systems and from numerical diagonalization for finite systems. We show analytically that if translational symmetry is broken through the presence of impurities, the mapping persists and is, in a certain sense, as local as possible, provided the spin-spin interaction between two sites of the Heisenberg model is calculated from the harmonic mean of the onsite Coulomb interaction on adjacent sites of the Hubbard model. Numerical calculations corroborate these findings also in interfaces and superlattices, where analytical calculations are more complicated.
Resumo:
Polymitarcyidae is a family of burrowing mayflies (Ephemeroptera: Ephemeroidea) distributed throughout the world but with highest diversity in the Neotropics. Tortopus Needham & Murphy, with a Panamerican distribution, is known from twelve species described in the adult stage. Nymphs are only known for three species: T. puella (Pictet), T. obscuripennis Dominguez and T. sarae Dominguez, and present a rather homogeneous morphology (Molineri 2008). They were firstly described for T. puella by Scott et al. (1959) and later Molineri (2008) described the other two. Both studies reported that these species burrow U-shaped tunnels in clay banks of rivers and streams, thus preventing them from being sampled in most limnological studies (that use surbers, drags, or drift nets). The aim of the present contribution is to describe and illustrate the previously unknown nymph of Tortopus harrisi Traver that shows important anatomical differences with the other nymphs known in the genus. This morphological differentiation suggests a different habitat use by these nymphs, sampled with drag and surber samplers in sandy substrate. New locality records are given for T. harrisi in Brazil. The nymphs are preserved in alcohol, mouthparts, legs and genital rudiments were mounted in microscope slides with Canada Balsam. Drawings were made with a camera lucida attached to a stereo microscope. The material is deposited in CUIC (Cornell University Insect Collection, Ithaca, NY), IML (Instituto Miguel Lillo, Tucuman) and in MZSP (Museu de Zoologia da Universidade de Sao Paulo, Sao Paulo). Catalogs and bibliography were consulted at Ephemeroptera Galactica (Hubbard 2009).
Resumo:
Background Accurate diagnosis of portal vein (PV) stenosis by real-time and color Doppler US (CD-US) after segmental liver transplantation in children can decrease morbidity by avoiding unnecessary biopsy, PV hypertension, thrombosis and loss of the graft. Objective To evaluate CD-US parameters for the prediction of PV stenosis after segmental liver transplantation in children. Materials and methods We retrospectively reviewed 61 CD-US examinations measuring the diameter at the PV anastomosis, velocities at the anastomosis (PV1) and in the segment proximal to the anastomosis (PV2), and the PV1/PV2 velocity ratio. The study group comprised patients with stenosis confirmed by angiography and the control group comprised patients with a good clinical outcome. Results PV stenosis was seen in 12 CD-US examinations. The mean PV diameter was smaller in the study group (2.6 mm versus 5.7 mm) and a PV diameter of < 3.5 mm was highly predictive of stenosis (sensitivity 100%, specificity 91.8%). Conclusion A PV diameter of < 3.5 mm is a highly predictive CD-US parameter for the detection of hemodynamically significant stenosis on angiography.
Resumo:
Models of warped extra dimensions with custodial symmetry usually predict the existence of a light Kaluza-Klein fermion arising as a partner of the right-handed top quark, sometimes called light custodians which we will denote (b) over tilde (R). The production of these particles at the LHC can give rise to multi-W events which could be observed in same-sign dilepton channels, but its mass reconstruction is challenging. In this paper we study the possibility of finding a signal for the pair production of this new particle at the LHC focusing on a rarer, but cleaner decay mode of a light custodian into a Z boson and a b-quark. In this mode it would be possible to reconstruct the light custodian mass. In addition to the dominant standard model QCD production processes, we include the contribution of a Kaluza-Klein gluon first mode. We find that (b) over tilde (R) stands out from the background as a peak in the bZ invariant mass. However, when taking into account only the electronic and muonic decay modes of the Z boson and b-tagging efficiencies, the LHC will have access only to the very light range of masses, m((b) over tilde) = O(500) GeV.
Resumo:
This study evaluated the caries risk of asthmatic patients on the basis of mutans streptococci (MS) and lactobacilli levels in saliva samples as well as the index of oral hygiene and dental caries (DMFT index). The study population was composed of 80 asthmatic children, aged 3-15 years, who use specific medication, and 80 matched, healthy control children. The parents were interviewed about oral health-related factors. The World Health Organization criteria were used for dental examinations. The Kohler and Bratthal methodology was used to detect salivary MS levels and dilutions of saliva were done for lactobacilli counting. No differences between asthma and control groups were observed for caries prevalence in children aged 3-6 and 7-10 years, except in severe cases in the younger group. However, higher caries prevalence for permanent dentition was observed in 11- to 15-year-old asthmatic children. An increased dental biofilm was observed in the asthma group, as well as salivary levels of MS. No differences were observed in levels of lactobacilli. No statistical correlations were found between medication, frequency of treatment, method of consumption and caries experience, dental biofilm and salivary levels of MS or lactobacilli. However, there was a correlation between MS levels and treatment duration. The logistic regression revealed that MS level is an important risk factor for increased caries experience. Asthma should be evaluated as a risk factor for caries experience because it can increase the levels of MS and the dental biofilm. Copyright (C) 2011 S. Karger AG, Basel
Resumo:
Aim: To assess dental caries prevalence in adolescents at urban and sub-urban areas of Maputo-City, Mozambique and to identify its relationship with dental fluorosis, dental plaque, nutritional status, frequency of sugar consumption and the concentration of fluoride in public water supply. Methods: Subjects (n=601) were randomly selected from five urban schools and five sub-urban schools. Clinical examinations were performed under standardised conditions by a trained examiner using DMFT index, SiC index, fluorosis index, PHP, BMI, a sugar consumption questionnaire and water supply analysis. The bivariate analysis and Pearson correlation was used (p<0.05). Results: The mean (DMFT) was 0.9 (+/- 1.65 SD). Children in urban schools showed less dental caries (0.8 +/- 1.49SD) than children in sub-urban schools (1.1 +/- 1.80SD, p=0.03). Only 8.15% had very mild to moderate fluorosis but most presented poor oral hygiene. Cases of malnutrition were found in more sub-urban schools (n = 109; 36.22%) than in urban schools (n = 66; 22.00%) (p=0.03). The frequency of sugar consumption was higher among urban children compared to suburban schools (p<0.00). The level of fluoride in water consumption in urban schools was 0.4 ppmF, above the level of fluoride in sub-urban schools, 0.2 ppmF. Conclusion: Dental caries should not be considered a major oral health problem in Maputo at the moment. However the data suggest the implementation of a population strategy to reduce dental caries rates, in children of both urban and sub-urban areas, in Maputo.