34 resultados para innervation
Resumo:
This study describes the normal morphology and morphometry of the dorsal cutaneous branch of the ulnar nerve (DCBU) in humans. Fourteen nerves of eight donors were prepared by conventional techniques for paraffin and epoxy resin embedding. Semiautomatic morphometric analysis was performed by means of specific computer software. Histograms of the myelinated and unmyelinated fiber population and the G-ratio distribution of fibers were plotted. Myelinated fiber density per nerve varied from 5,910 to 10,166 fibers/mm(2), with an average of 8,170 +/- 393 fibers/mm(2). The distribution was bimodal with peaks at 4.0 and 9.5 mu m. Unmyelinated fiber density per nerve varied from 50,985 to 127,108, with an average of 78,474 +/- 6, 610 fibers/mm(2), with a unimodal distribution displaying a peak at 0.8 mu m. This study thus adds information about the fascicles and myelinated and unmyelinated fibers of DCBU nerves in normal people, which may be useful in further studies concerning ulnar nerve neuropathies, mainly leprosy neuropathy.
Resumo:
Despite numerous literature reports on the morphometry of the myelinated fibers of phrenic nerves in rats, a systematic study of the longitudinal and lateral symmetry of the unmyelinated fibers morphometry is not available. In this study, we have undertaken ultrastructural and morphometric studies of the phrenic nerve in adult rats, assessing two different levels (proximal and distal) from both right and left sides. Phrenic nerves of adult male Wistar rats were prepared for epoxy resin embedding and transmission electron microscopy. Morphometric analysis was performed with the aid of computer software, which took into consideration the unmyelinated fiber number, density, area, and diameter, as well as ratio between myelinated and unmyelinated fibers, and the percentage of the fascicular area occupied by the myelinated and unmyelinated fibers. Comparison of data from proximal and distal segments on the same side and from the same levels between sides was performed. Differences were considered significant when P < 0.05. The most important finding is that morphometric parameters of the phrenic nerve unmyelinated fibers in adult rats are both longitudinally and laterally symmetric. This study adds important morphometric information about the unmyelinated fibers of the phrenic nerves in adult rats for proximal and distal levels on both sides of the animal. Anat Rec, 292:513-517, 2009. (C) 2008 Wiley-Liss, Inc.
Resumo:
Stellate ganglion (SG) represents the main sympathetic input to the heart. This study aimed at investigating physical exercise-related changes in the quantitative aspects of SG neurons in treadmill-exercised Wistar rats. By applying state-of-the-art design-based stereology, the SG volume, total number of SG neurons, mean perikaryal volume of SG neurons, and the total volume of neurons in the whole SG have been examined. Arterial pressure and heart rate were also measured at the end of the exercise period. The present study showed that a low-intensity exercise training program caused a 12% decrease in the heart rate of trained rats. In contrast, there were no effects on systolic pressure, diastolic pressure, or mean arterial pressure. As to quantitative changes related to physical exercise, the main findings were a 21% increase in the fractional volume occupied by neurons in the SG, and an 83% increase in the mean perikaryal volume of SG neurons in treadmill-trained rats, which shows a remarkable neuron hypertrophy. It seems reasonable to infer that neuron hypertrophy may have been the result of a functional overload imposed on the SG neurons by initial posttraining sympathetic activation. From the novel stereological data we provide, further investigations are needed to shed light on the mechanistic aspect of neuron hypertrophy: what role does neuron hypertrophy play? Could neuron hypertrophy be assigned to the functional overload induced by physical exercise? (C) 2008 Wiley-Liss, Inc.
Resumo:
Recently, superior cervical ganglionectomy has been performed to investigate a variety of scientific topics from regulation of intraocular pressure to suppression of lingual tumour growth. Despite these recent advances in our understanding of the functional mechanisms underlying superior cervical ganglion (SCG) growth and development after surgical ablation, there still exists a need for information concerning the quantitative nature of the relationships between the removed SCG and its remaining contralateral ganglion and between the remaining SCG and its modified innervation territory. To this end, using design-based stereological methods, we have investigated the structural changes induced by unilateral ganglionectomy in sheep at three distinct timepoints (2, 7 and 12 weeks) after surgery. The effects of time, and lateral (left-right) differences, were examined by two-way analyses of variance and paired t-tests. Following removal of the left SCG, the main findings were: (i) the remaining right SCG was bigger at shorter survival times, i.e. 74% at 2 weeks, 55% at 7 weeks and no increase by 12 weeks, (ii) by 7 weeks after surgery, the right SCG contained fewer neurons (no decrease at 2 weeks, 6% fewer by 7 weeks and 17% fewer by 12 weeks) and (iii) by 7 weeks, right SCG neurons were also larger and the magnitude of this increase grew substantially with time (no rise at 2 weeks, 77% by 7 weeks and 215% by 12 weeks). Interaction effects between time and ganglionectomy-induced changes were significant for SCG volume and mean perikaryal volume. These findings show that unilateral superior cervical ganglionectomy has profound effects on the contralateral ganglion. For future investigations, it would be interesting to examine the interaction between SCGs and their innervation targets after ganglionectomy. Is the ganglionectomy-induced imbalance between the sizes of innervation territories the milieu in which morphoquantitative changes, particularly changes in perikaryal volume and neuron number, occur? Mechanistically, how would those changes arise? Are there any grounds for believing in a ganglionectomy-triggered SCG cross-innervation and neuroplasticity? (C) 2011 ISDN. Published by Elsevier Ltd. All rights reserved.
Resumo:
There are many techniques for the treatment of hip dysplasia, and novel research is currently being undertaken in the hope of obtaining more efficient and less traumatic techniques. The denervation of the hip joint capsule is a simple and effective technique that allows recovery of the functional activity of the affected limbs in significantly less time than other techniques. This surgical procedure consists of removing the acetabular periosteum, thus eliminating the nerve fibres with consequent analgesia. The aim of this investigation was to quantify the number of nerve fibres present in different regions of the acetabular periosteum. The knowledge of regional differences is potentially valuable for the refining of the denervation technique of the hip joint capsule. Thirty canine acetabular fragments were used to compare the nerve fibre density of the periosteum. The results showed a significant difference between the mean density of nerve fibres at the cranial and dorsal-lateral portion (approximately 75 fibres/mm(2)) and caudal lateral portion (approximately 60 fibres/mm(2)) of the acetabulum. Those fibres at the pedosteum are almost positioned in a sagittal plane, pointing towards the joint capsule, suggesting the some density in the latter region. These results indicate a new approach to the articular denervation technique, thus obtanining even better results for the treatment of hip dysplasia in dogs.
Resumo:
The vomeronasal system is crucial for social and sexual communication in mammals. Two populations of vomeronasal sensory neurons, each expressing G alpha i2 or G alpha o proteins, send projections to glomeruli of the rostral or caudal accessory olfactory bulb, rAOB and cAOB, respectively. In rodents, the G alpha i2- and G alpha o-expressing vomeronasal pathways have shown differential responses to small/volatile vs. large/non-volatile semiochemicals, respectively. Moreover, early gene expression suggests predominant activation of rAOB and cAOB neurons in sexual vs. aggressive contexts, respectively. We recently described the AOB of Octodon degus, a semiarid-inhabiting diurnal caviomorph. Their AOB has a cell indentation between subdomains and the rAOB is twice the size of the cAOB. Moreover, their AOB receives innervation from the lateral aspect, contrasting with the medial innervation of all other mammals examined to date. Aiming to relate AOB anatomy with lifestyle, we performed a morphometric study on the AOB of the capybara, a semiaquatic caviomorph whose lifestyle differs remarkably from that of O. degus. Capybaras mate in water and scent-mark their surroundings with oily deposits, mostly for male-male communication. We found that, similar to O. degus, the AOB of capybaras shows a lateral innervation of the vomeronasal nerve, a cell indentation between subdomains and heterogeneous subdomains, but in contrast to O. degus the caudal portion is larger than the rostral one. We also observed that four other caviomorph species present a lateral AOB innervation and a cell indentation between AOB subdomains, suggesting that those traits could represent apomorphies of the group. We propose that although some AOB traits may be phylogenetically conserved in caviomorphs, ecological specializations may play an important role in shaping the AOB.
Resumo:
The progress of science in search of new techniques of the nerve regeneration and the functional repair in reinnervated muscle has been the target of many researchers around the world. Consequently, nerves and muscles in different body segments asked for more enlightenment of their morphology, their interrelation with other anatomic structures and their peculiarities. One of the most significant areas that need deeper studies is the region of the head and neck, since they are often affected by important pathologies. In order to offer the researcher`s community a morphological myoneural interaction model, this study elected the levator labii superioris muscle and its motor nerve, the buccal branch of the facial nerve (VII pair) not only for its special characteristics, but also its value on the facial expression. The rat was chosen for this investigation for being easy to obtain, to keep, to manipulate and to compare this experiment with many others studies previously published. The techniques used were Mesoscopic (dissection), histoenzymologic and morphometric ones. In the results the muscle proved to have a predominance of fast twich fibers (FG and FOG) and superficial location, with a proximal bone and a distal cutaneous insertion. Its motor nerve, the buccal branch of the facial nerve (VII pair), breaks through the muscle belly into its deep face, and comprised a heterogeneous group of myelinic nerve fibers disposed in a regular form in all fascicle. Near the motor point, the nerve showed to be composed of two fascicles with different sizes. Due to the small nerve dimensions, the nerve fibers have a smaller diameter if compared to the motor nerve of pectineus muscle of the cat. Further studies with neural tracers have already had a start in order to provide more information about the distribution and the architecture of these fibers.
Resumo:
The weaver mouse represents the only genetic animal model of gradual nigrostriatal dopaminergic neurodegeneration which is proposed as a pathophysiological phenotype of Parkinson`s disease. The aim of the present study was to analyze the nitric oxide and dopaminergic systems in selected brain regions of homozygous weaver mice at different postnatal ages corresponding to specific stages of the dopamine loss. Structural deficits were evaluated by quantification of tyrosine hydroxylase and neuronal nitric oxide synthase-immunostaining in the cortex, striatum, accumbens nuclei, subthalamic nuclei, ventral tegmental area, and substantia nigra compacta of 10-day, 1- and 2-month-old wildtype and weaver mutant mice. The results confirmed the progressive loss of dopamine during the postnatal development in the adult weaver mainly affecting the substantia nigra pars compacta, striatum, and subthalamic nucleus and slightly affecting the accumbens nuclei and ventral tegmental area. A general decrease in neuronal nitric oxide synthase-immunostaining with age was revealed in both the weaver and wild-type mice, with the decrease being most pronounced in the weaver. In contrast, there was an increase in the substantia nigra pars compacta nitric oxide synthase-immunostaining and a decrease mainly in the subthalamic and accumbens nuclei of the 2-month-old weaver mutant. The decrease in the expression of nNOS may bear functional significance related to the process of aging. DA neurons from the substantia nigra directly modulate the activity of subthalamic nucleus neurons, and their loss may contribute to the abnormal activity of subthalamic nucleus neurons. Although the functional significance of these changes is not clear, it may represent plastic compensating adjustments resulting from the loss of dopamine innervation, highlighting a possible role of nitric oxide in this process. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Previous reports about the rat ovary have shown that cold stress promotes ovarian morphological alterations related to a polycystic ovary (PCO) condition through activation of the ovarian sympathetic nerves. Because the noradrenergic nucleus locus coeruleus (LC) is activated by cold stress and synaptically connected to the preganglionic cell bodies of the ovarian sympathetic pathway, this study aimed to evaluate the LC`s role in cold stress-induced PCO in rats. Ovarian morphology and endocrine and sympathetic functions were evaluated after 8 wk of chronic intermittent cold stress (4 C, 3 h/d) in rats with or without LC lesion. The effect of acute and chronic cold stress upon the LC neuron activity was confirmed by Fos protein expression in tyrosine hydroxylase-immunoreactive neurons. Cold stress induced the formation of follicular cysts, type III follicles, and follicles with hyperthecosis alongside increased plasma estradiol and testosterone levels, irregular estrous cyclicity, and reduced ovulation. Considering estradiol release in vitro, cold stress potentiated the ovarian response to human chorionic gonadotropin. Ovarian norepinephrine (NE) was not altered after 8 wk of stress. However, LC lesion reduced NE activity in the ovary of cold-stressed rats, but not in controls, and prevented all the cold stress effects evaluated. Cold stress increased the number of Fos/tyrosine hydroxylase-immunoreactive neurons in the LC, but this effect was more pronounced for acute stress as compared with chronic stress. These results show that cold stress promotes PCO in rats, which apparently depends on ovarian NE activity that, under this condition, is regulated by the noradrenergic nucleus LC.
Resumo:
The venom gland of viperid snakes has a central lumen where the venom produced by secretory cells is stored. When the venom is lost from the gland, the secretory cells are activated and new venom is produced. The production of new venom is triggered by the action of noradrenaline on both alpha(1)- and beta-adrenoceptors in the venom gland. In this study, we show that venom removal leads to the activation of transcription factors NF kappa B and AP-1 in the venom gland. In dispersed secretory cells, noradrenaline activated both NF kappa B and AP-1. Activation of NF kappa B and AP-1 depended on phospholipase C and protein kinase A. Activation of NF kappa B also depended on protein kinase C. Isoprenaline activated both NF kappa B and AP-1, and phenylephrine activated NF kappa B and later AP-1. We also show that the protein composition of the venom gland changes during the venom production cycle. Striking changes occurred 4 and 7 days after venom removal in female and male snakes, respectively. Reserpine blocks this change, and the administration of alpha(1)- and beta-adrenoceptor agonists to reserpine-treated snakes largely restores the protein composition of the venom gland. However, the protein composition of the venom from reserpinized snakes treated with alpha(1)- or beta-adrenoceptor agonists appears normal, judging from SDS-PAGE electrophoresis. A sexual dimorphism in activating transcription factors and activating venom gland was observed. Our data suggest that the release of noradrenaline after biting is necessary to activate the venom gland by regulating the activation of transcription factors and consequently regulating the synthesis of proteins in the venom gland for venom production.
Resumo:
The dorsal premammillary nucleus (PMd) is one of the most responsive hypothalamic sites during exposure to a predator or its odor, and to a context previously associated with a predatory threat; and lesions or pharmacological inactivation centered therein severely reduced the anti-predatory defensive responses. Previous studies have shown that beta adrenergic transmission in the PMd seems critical to the expression of fear responses to predatory threats. In the present study, we have investigated the putative sources of catecholaminergic inputs to the PMd. To this end, we have first described the general pattern of catecholaminergic innervation of the PMd by examining the distribution and morphology of the tyrosine hydroxylase (TH) immunoreactive fibers in the nucleus; and next, combining Fluoro Gold (FG) tracing experiments and TH immunostaining, we determined the putative sources of catecholaminergic inputs to the nucleus. Our results revealed that the PMd presents a moderately dense plexus of catecholaminergic fibers that seems to encompass the rostral pole and ventral border of the nucleus. Combining the results of the FG tract-tracing and TH immunostaining, we observed that the locus coeruleus was the sole brain site that contained double FG and TH immunostained cells. In summary, the evidence suggests that the locus coeruleus is seemingly a part of the circuit responding to predatory threats, and, as shown by the present results, is the sole source of catecholaminergic inputs to the PMd, providing noradrenergic inputs to the nucleus, which, by acting via beta adrenoceptor, seems to be critical for the expression of anti-predatory responses. (C) 2011 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Mandibular movements occur through the triggering of trigeminal motoneurons. Aberrant movements by orofacial muscles are characteristic of orofacial motor disorders, such as nocturnal bruxism (clenching or grinding of the dentition during sleep). Previous studies have suggested that autonomic changes occur during bruxism episodes. Although it is known that emotional responses increase jaw movement, the brain pathways linking forebrain limbic nuclei and the trigeminal motor nucleus remain unclear. Here we show that neurons in the lateral hypothalamic area, in the central nucleus of the amygdala, and in the parasubthalamic nucleus, project to the trigeminal motor nucleus or to reticular regions around the motor nucleus (Regio h) and in the mesencephalic trigeminal nucleus. We observed orexin co-expression in neurons projecting from the lateral hypothalamic area to the trigeminal motor nucleus. In the central nucleus of the amygdala, neurons projecting to the trigeminal motor nucleus are innervated by corticotrophin-releasing factor immunoreactive fibers. We also observed that the mesencephalic trigeminal nucleus receives dense innervation from orexin and corticotrophin-releasing factor immunoreactive fibers. Therefore, forebrain nuclei related to autonomic control and stress responses might influence the activity of trigeminal motor neurons and consequently play a role in the physiopathology of nocturnal bruxism.
Resumo:
Calomys callosus is a wild, native forest rodent found in South America. In Brazil, this species has been reported to harbour the parasitic protozoan Trypanosoma cruzi. The ganglionated plexus of this species was studied using whole-mount preparations of trachea that were stained using histological and histochemical methods. The histological methods were used to determine the position of the ganglia with respect to the trachea muscle and to determine the presence of elastic and collagen fibers. The histochemical method of NADH-diaphorase was used for morphometric evaluations of the plexus. The tracheal plexus lies exclusively over the muscular part of the organ, dorsal to the muscle itself. It varies in pattern and extent between animals. The average number of neurons was 279 and the cellular profile area ranged from 38.37 mu m(2) to 805.89 mu m(2). Acetylcholinesterase (AChE) histochemistry verified that both ganglia and single neurons lie along nerve trunks and are reciprocally interconnected with the plexus. Intensely AChE-reactive neurons were found to be intermingled with poorly reactive ones. Two longitudinal AChE-positive nerve trunks were also observed and there was a diverse number of ganglia along the intricate network of nerves interconnecting the trunks. A ganglion capsule of collagen and elastic fibers surrounding the neurons was observed. Under polarized light, the capsule appeared to be formed by Type I collagen fibers. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
This study aimed to evaluate the effects of regular physical activity on the morphology of the myenteric plexus of the duodenum in rats during the ageing process. To this end, 45 Wistar rats were divided into three groups: C (sedentary - 6 months old), S (sedentary - 12 months old) and T (trained - 12 months old). The animals of group S were given with a physical activity programme consisting of a 10-min-treadmill workout once a week. The animals of group T were submitted to the physical activity programme five times a week. Their duodenums were collected and submitted to the techniques of nicotinamide adenine dinucleotide (NADH)-diaphorase enzyme histochemistry for whole-mount preparations and transmission electron microscopy. No differences in the constitution of the myenteric plexuses were found when the sedentary and trained groups were compared with the control group. The ultrastructural features were similar for the three groups. However, it was verified that the physical activity of the trained animals resulted in a similar myenteric neuron morphology to that of the adult animals (6 months old), thereby confirming its beneficial effect, as the sedentary animals had larger alterations in the collagen fibrils and the basal membrane that occur through ageing. The quantitative analysis showed that the NADH-diaphorase positive neurons decreased with ageing and increased with physical activity (P > 0.05). No significant alteration (P > 0.05) in the neuronal profile area of the NADH-diaphorase positive neurons has been observed with ageing.
Resumo:
The lateral hypothalamic area (LHA) participates in the integration of sensory information and somatomotor responses associated with hunger and thirst. Although the LHA is neurochemically heterogeneous, a particularly high number of cells express melanin-concentrating hormone (MCH), which has been reported to play a role in energy homeostasis. Treatment with MCH increases food intake, and MCH mRNA is overexpressed in leptin-deficient (ob/ob) mice. Mice lacking both MCH and leptin present reduced body fat, mainly due to increased resting energy expenditure and locomotor activity. Dense MCH innervation of the cerebral motor cortex (MCx) and the pedunculopontine tegmental nucleus (PPT), both related to motor function, has been reported. Therefore, we postulated that a specific group of MCH neurons project to these areas. To investigate our hypothesis, we injected retrograde tracers into the MCx and the PPT of rats, combined with immunohistochemistry. We found that 25% of the LHA neurons projecting to the PPT were immunoreactive for MCH, and that 75% of the LHA neurons projecting to the MCx also contained MCH. Few MCH neurons were found to send collaterals to both areas. We also found that 15% of the incerto-hypothalamic neurons projecting to the PPT expressed MCH immunoreactivity. Those neurons preferentially innervated the rostral PPT. In addition, we observed that the MCH neurons express glutamic acid decarboxylase mRNA, a gamma-aminobutyric acid (GABA) synthesizing enzyme. We postulate that MCH/GABA neurons are involved in the inhibitory modulation of the innervated areas, decreasing motor activity in states of negative energy balance. (C) 2007 Published by Elsevier B.V.