171 resultados para impurity absorption spectra
Resumo:
In this work, we describe the characterization of the complex [Fe(tpy-NH2)(2)](PF6)(2) (tpy-NH2 = bis[4`-(3-aminophenyl)-2, 2`:6`,2 ``-terpyridine]. The complex was oxidatively electropolymerized on glassy.-carbon electrodes in CH3CN/0.1 M tetraethylammonium perchlorate (TEAP) to generate polymer films that exhibit reversible oxidative electrochemical behavior in a wide potential range (0.0-1.6 V), as well as high conductivity and stability/durability. In situ spectrocyclic voltammetry of this modified electrode was carried out on a photodiode array spectrophotometer attached to a potentiostat, which provided UV-Vis absorption spectra of the redox species during the potential sweep. We determined charge transport parameters as a function of time and thickness of the modified electrode, and the results showed that poly-[[Fe(tpy-NH2)(2)](2+)](n) can be made to exhibit three regimes of charge transport behavior by manipulation of the film thickness and the experimental time-scale. Morphological characterization of the film was provided by atomic force microscopy. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The effects of iron ions on dielectric properties of lithium sodium phosphate glasses were studied by non-usual, fast and non-destructive microwave techniques. The dielectric constant (epsilon`). insertion loss (L) and microwave absorption spectra (microwave response) of the selected glass system xFe(2)O(3)center dot(1 - x)(50P(2)O5 center dot 25Li(2)O center dot 25Na(2)O), being x = 0, 3, 6, ....,15 expressed in mol.%, were investigated. The dielectric constant of the samples was investigated at 9.00 GHz using the shorted-line method (SLM) giving the minimum value of epsilon` = 2.10 +/- 0.02 at room temperature, and increasing further with x, following a given law. It was observed a gradual increasing slope Of E in the temperature range of 25 <= t <= 330 degrees C, at the frequency of 9.00 GHz. Insertion loss (measured at 9.00 GHz) and measurements of microwave energy attenuation, at frequencies ranging from 8.00 to 12.00 GHz were also studied as a function of iron content in the glass samples. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The magnetic response of the near-band-edge optical properties is studied in EuTe layers. In several magneto-optical experiments, the absorption and emission are described as well as the related Stokes shift. Specifically, we present the first experimental report of the photoluminescence excitation (PLE) spectrum in Faraday configuration. The PLE spectra shows to be related with the absorption spectra through the observation of resonance between the excitation light and the zero-field band-gap. A new emission line appears at 1.6 eV at a moderate magnetic field in the photoluminescence (PL) spectra. Furthermore, we examine the absorption and PL red-shift induced by the magnetic field in the light of the d-f exchange interaction energy involved in these processes. Whereas the absorption red-shift shows a quadratic dependence on the field, the PL red-shift shows a linear dependence which is explained by spin relaxation of the excited state.
Resumo:
Barium molybdate (BaMoO(4)) powders were synthesized by the co-precipitation method and processed in microwave-hydrothermal at 140 degrees C for different times. These powders were characterized by X-ray diffraction (XRD), Fourier transform Raman (FT-Raman), Fourier transform infrared (FT-IR), ultraviolet-visible (UV-vis) absorption spectroscopies and photoluminescence (PL) measurements. XRD patterns and FT-Raman spectra showed that these powders present a scheelite-type tetragonal structure without the presence of deleterious phases. FT-IR spectra exhibited a large absorption band situated at around 850.4 cm(-1), which is associated to the Mo-O antisymmetric stretching vibrations into the [MoO(4)] clusters. UV-vis absorption spectra indicated a reduction in the intermediary energy levels within band gap with the processing time evolution. First-principles quantum mechanical calculations based on the density functional theory were employed in order to understand the electronic structure (band structure and density of states) of this material. The powders when excited with different wavelengths (350 nm and 488 nm) presented variations. This phenomenon was explained through a model based in the presence of intermediary energy levels (deep and shallow holes) within the band gap. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
This work demonstrates that the detuning of the fs-laser spectrum from the two-photon absorption band of organic materials can be used to reach further control of the two-photon absorption by pulse spectral phase manipulation. We investigate the coherent control of the two-photon absorption in imidazole-thiophene core compounds presenting distinct two-photon absorption spectra. The coherent control, performed using pulse phase shaping and genetic algorithm, exhibited different growth rates for each sample. Such distinct trends were explained by calculating the two-photon absorption probability considering the intrapulse interference mechanism, taking into account the two-photon absorption spectrum of the samples. Our results indicate that tuning the relative position between the nonlinear absorption and the pulse spectrum can be used as a novel strategy to optimize the two-photon absorption in broadband molecular systems. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Photoexpansion and photobleaching effects have been observed in amorphous GeS(2) + Ga(2)O(3) (GGSO) thin films, when their surfaces were exposed to UV light. The photoinduced changes on the surface of the samples are indications that the structure has been changed as a result of photoexcitation. In this paper, micro-Raman, energy dispersive X-ray analysis (EDX) and backscattering electrons (BSE) microscopy were the techniques used to identify the origin of these effects. Raman spectra revealed that these phenomena are a consequence of the Ge-S bonds` breakdown and the formation of new Ge-O bonds, with an increase of the modes associated with Ge-O-Ge bonds and mixed oxysulphide tetrahedral units (S-Ge-O). The chemical composition measured by EDX and BSE microscopy images indicated that the irradiated area is oxygen rich. So, the present paper provides fundamental insights into the influence of the oxygen within the glass matrix on the considered photoinduced effects. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
[Ba(1-x)Y(2x/3)](Zr(0.25)Ti(0.75))O(3) powders with different yttrium concentrations (x = 0, 0.025 and 0.05) were prepared by solid state reaction. These powders were analyzed by X-ray diffraction (XRD). Fourier transform Raman scattering (FT-RS), Fourier transform infrared (FT-IR) and X-ray absorption near-edge (XANES) spectroscopies. The optical properties were investigated by means of ultraviolet-visible (UV-vis) absorption spectroscopy and photoluminescence (PL) measurements. Even with the addition of yttrium, the XRD patterns revealed that all powders crystallize in a perovskite-type cubic structure. FT-RS and FT-IR spectra indicated that the presence of [YO(6)] clusters is able to change the interaction forces between the O-Ti-O and O-Zr-O bonds. XANES spectra were used to obtain information on the off-center Ti displacements or distortion effects on the [TiO(6)] clusters. The different optical band gap values estimated from UV-vis spectra suggested the existence of intermediary energy levels (shallow or deep holes) within the band gap. The PL measurements carried out with a 350 nm wavelength at room temperature showed that all powders present typical broad band emissions in the blue region. (C) 2010 Elsevier Masson SAS. All rights reserved.
Resumo:
The capability of self-assembly and molecular recognition of biomolecules is essential for many nanotechnological applications, as in the use of alkyl-modified nucleosides and oligonucleotides to increase the cellular uptake of DNA and RNA. In this study, we show that a lipophilic nucleoside, which is an isomer mixture of 2`-palmitoyluridin und 3`-palmitoyluridin, forms Langmuir monolayers and Langmuir-Blodgett films as a typical amphiphile, though with a smaller elasticity. The nucleoside may be incorporated into dipalmitoyl phosphatidyl choline (DPPC) monolayers that serve as a simplified cell membrane model. The molecular-level interactions between the nucleoside and DPPC led to a remarkable condensation of the mixed monolayer, which affected both surface pressure and surface potential isotherms. The morphology of the mixed monolayers was dominated by the small domains of the nucleoside. The mixed monolayers could be deposited onto solid substrates as a one-layer Langmuir Blodgett film that displayed UV-vis absorption spectra typical of aggregated nucleosides owing to the interaction between the nucleoside and DPPC. The formation of solid films with DNA building blocks in the polar heads may open the way for devices and sensors be produced to exploit their molecular recognition properties. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Lithium nitrate has been used to prevent and to mediate the expansion caused by alkali-silica reaction (ASR). However, there is limited information on how it affects the existing reaction products caused by ASR. The aim of the present work is to determine the modifications caused by the LiNO3 treatment on the structure of the gel produced by ASR. ASR gel samples obtained from a concrete dam were exposed to an aqueous solution of lithium nitrate and sodium hydroxide with molar LiNO3/NaOH = 0.74, and the resulting products were analyzed by X-ray diffraction, infrared spectroscopy, and solid-state nuclear magnetic resonance of Si-29, Na-23, and Li-7. The treatment of the gel samples produces significant structural modifications in ASR products. A new amorphous silicate compound incorporating Li+ ions is formed, with an average silicate network that can be described as linear in contrast with the layered structure of the original gel. This elimination of the layered structure after the Li-based treatments may be related to the reduction of the tendency of the gel to expand. Also, several crystalline compounds containing potassium indicate the release of this species from the original ASR gel.
Resumo:
Thermal Lens Spectrometry has traditionally been carried out in the single-beam and the mode-mismatched dual-beam configurations. Recently, a much more sensitive dual-beam TL setup was developed, where the probe beam is expanded and collimated. This feature optimizes Thermal Lens (TL) signal and allows the use of thicker samples, further improving the sensitivity. In this paper, we have made comparisons between the conventional and optimized TL configurations, and presented applications such as measurements of very low absorptions and concentrations in water and Cr(III) aqueous solution in the UV-vis range. For pure water we found linear absorption coefficients as low as the Raman scattering one due to the stretching vibrational modes of OH group. The detection limit was estimated 1 x 10(-6) cm(-1) with a 180-mW excitation power using a 100-mm cell length. This sensitivity is very high, considering that water has a photothermal enhancement factor similar to 33 times smaller than CCl(4), for example. For Cr(III) species in aqueous solution, the limit of detection (LOD) was estimated in similar to 40 ng mL(-1) at 514 nm, or similar to 10ng mL(-1) at 405 nm, which is similar to 30 times smaller than the LOD achieved with conventional transmission techniques. The more recent TL configuration is very attractive to obtain absorption spectra, since the result does not depend critically on the beam parameters, unlike the other configurations. The main drawbacks of this optimized TL configuration are the longer acquisition time and the need for larger samples. (C) 2011 Published by Elsevier B.V.
Resumo:
Among lampyrids, intraspecific sexual communication is facilitated by spectral correspondence between visual sensitivity and bioluminescence emission from the single lantern in the tail. Could a similar strategy be utilized by the elaterids (click beetles), which have one ventral abdominal and two dorsal prothoracic lanterns? Spectral sensitivity [S(lambda)] and bioluminescence were investigated in four Brazilian click beetle species Fulgeochlizus bruchii, Pyrearinus termitilluminans, Pyrophorus punctatissimus and P. divergens, representing three genera. In addition, in situ microspectrophotometric absorption spectra were obtained for visual and screening pigments in P. punctatissimus and P. divergens species. In all species, the electroretinographic S(lambda) functions showed broad peaks in the green with a shoulder in the near-ultraviolet, suggesting the presence of short- and long-wavelength receptors in the compound eyes. The long-wavelength receptor in Pyrophorus species is mediated by a P540 rhodopsin in conjunction with a species-specific screening pigment. A correspondence was found between green to yellow bioluminescence emissions and its broad S(lambda) maximum in each of the four species. It is hypothesized that in elaterids, bioluminescence of the abdominal lantern is an optical signal for intraspecifc sexual communication, while the signals from the prothoracic lanterns serve to warn predators and may also provide illumination in flight.
Resumo:
Akaganeite is a very rare iron oxyhydroxide in nature. It can be obtained by many synthetic routes, but thermohydrolysis is the most common method reported in the literature. In this work, akaganeite-like materials were prepared through the thermohydrolysis of FeCl(3)center dot 6H(2)O in water and suspensions containing clay minerals. X-ray diffractometry (XRD), Fourier transform infrared (FTIR) spectroscopy, and scanning electron microscopy (SEM) data show that the clays determine the crystal phase and size of the iron oxyhydroxide crystals. According to XRD and FTIR data, beta-FeO(OH) (akaganeite) is the main metal oxyhydroxide phase. Considering the small basal spacing (d(0 0 1)) displacement observed when comparing the XRD patterns of pristine clays with the composites containing beta-FeO(OH), the iron oxyhydroxide should be mostly located on the basal and edge surfaces of the clay minerals. UV-Vis electronic absorption spectra indicate that the preferred phase of the iron oxyhydroxide is determined by the nature of the clay minerals. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
The heteroaggregation behavior between a new class of nonplanar cationic beta-octabrominated meso-alkylpyridinium zinc(II)-porphyrins (beta-Br(8)(ZnP)) and anionic tetrasulfonated metallophthalocyanines (MTSPc, M = Ni(II) and Cu(II)) has been studied by UV-Vis electronic spectroscopy, in dimethylsulfoxide (DMSO) solution. The heteroaggregate stoichiometry and the association constants were determined by means of Job plots. Dimers and unexpected trimers, taking into account the existence of axially coordinated DMSO molecules to the central metal in both beta-Br(8)(ZnP) and MTSPc complexes, are formed in solution. The spectroscopic properties of the heteroaggregates are markedly different from those observed in the correspondent planar cationic derivatives, the heteroaggregates showing major changes predominantly in the beta-Br(8)(ZnP) Soret band region and minor effects in the MTSPc Q bands. The observed changes in the Soret band region (red/blue shifts, decrease in the absorption intensities) depend on the nature of the alkyl substituent attached to the meso-pyridinium group. The greater versatility of the nonplanar porphyrins accommodating the meso-substituents in out-of-plane and in-plane conformations is proposed to explain the observed stoichiometries and the differences on the heteroaggregates spectroscopic properties for each beta-Br(8)(ZnP) compound. The likely conformations assumed by the meso-substituents in these beta-Br(8)(ZnP) compounds and its spectroscopic characteristics are in accordance with the participation of the substituents as the main factor on the extent of the observed red-shifted spectra in nonplanar porphyrins. The obtained association constants (K(IP)) for the dimers and trimers are lower than those previously found for the similar planar cationic porphyrin systems, due to the lack of extensive pi-pi interactions and to the less effective approximation between the ionic groups, resulting in loosened heteroaggregates, particularly for the trimeric systems. Furthermore, the experimental results suggest that the NiTSPc is more distorted in DMSO solution than the CuTSPc derivative, favoring the interaction with the nonplanar beta-Br(8)(ZnP) compounds. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
The synthesis and characterization of lanthanide(III) citrates with stoichiometries 1:1 and 2:3; [LnL center dot xH(2)O] and [Ln(2)(LH)(3)center dot 2H(2)O], Ln=La, Ce, Pr, Nd, Sm and Eu are reported. L stands for (C6O7H5)(3-) and LH for (C6O7H6)(2-). Infrared absorption spectra of both series evidence coordination of carboxylate groups through symmetric bridges or chelation. X-ray powder patterns show the amorphous character of [LnL center dot xH(2)O]. The compounds [Ln(2)LH(3)center dot 2H(2)O] are crystalline and isomorphous. Emission spectra of Eu compounds suggest C-2v symmetry for the coordination polyhedron of [LnL center dot xH(2)O] and C-4v for [Ln(2)(LH)(3)center dot 2H(2)O]. Thermal analyses (TG-DTG-DTA) were carried out for both series. The thermal analysis patterns of the two series are quite different and both fit in a 4-step model of thermal decomposition, with lanthanide oxides as final products.
Resumo:
Some oxindole-Schiff base copper(II) complexes have already shown potential antitumor activity towards different cells, inducing apoptosis in a process modulated by the ligand, and having nuclei and mitochondria as main targets. Here, three novel copper(II) complexes with analogous ligands were isolated and characterized by spectroscopic techniques, having their reactivity compared to the so far most active complex in this class. Cytotoxicity experiments carried out toward human neuroblastoma SH-SY5Y cells confirmed its proapoptosis property. DNA cleavage studies were then performed in the presence of these complexes, in order to verify the influence of ligand structural features in its nuclease activity. All of them were able to cause double-strand DNA scissions, giving rise to nicked circular Form II and linear Form III species, in the presence of hydrogen peroxide. Additionally, DNA Form II was also detected in the absence of peroxide when the most active complex, [Cu(isaepy)(2)](2+) 1, was used. In an effort to better elucidate their interactions with DNA, solutions of the different complexes titrated with DNA had their absorption spectra monitored. An absorbance hyperchromism observed at 260 nm pointed to the intercalation of these complexes into the DNA structure. Further, investigations of 2-deoxy-D-ribose (DR) oxidation catalyzed by each of those complexes, using 2-thiobarbituric acid reactive species (TBARS) method, and detection of reactive oxygen species (ROS) formation by spin-trapping EPR, suggested that their mechanism of action in performing efficiently DNA cleavage occurs preferentially, but not only by oxidative pathways. (C) 2007 Elsevier Inc. All rights reserved.