126 resultados para hearth carbon blocks


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on oxygen abundances determined from medium-resolution near-infrared spectroscopy for a sample of 57 carbon-enhanced metal-poor (CEMP) stars selected from the Hamburg/ESO Survey. The majority of our program stars exhibit oxygen-to-iron ratios in the range +0.5 < [O/Fe]< + 2.0. The [O/Fe] values for this sample are statistically compared to available high-resolution estimates for known CEMP stars as well as to high-resolution estimates for a set of carbon-normal metal-poor stars. Carbon, nitrogen, and oxygen abundance patterns for a sub-sample of these stars are compared to yield predictions for very metal-poor asymptotic giant branch (AGB) abundances in the recent literature. We find that the majority of our sample exhibit patterns that are consistent with previously studied CEMP stars having s-process-element enhancements and thus have very likely been polluted by carbon- and oxygen-enhanced material transferred from a metal-poor AGB companion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have developed a new procedure to search for carbon-enhanced metal-poor (CEMP) stars from the Hamburg/ESO (HES) prism-survey plates. This method employs an extended line index for the CH G band, which we demonstrate to have superior performance when compared to the narrower G-band index formerly employed to estimate G-band strengths for these spectra. Although CEMP stars have been found previously among candidate metal-poor stars selected from the HES, the selection on metallicity undersamples the population of intermediate-metallicity CEMP stars (-2.5 <= [Fe/H] <= -1.0); such stars are of importance for constraining the onset of the s-process in metal-deficient asymptotic giant branch stars (thought to be associated with the origin of carbon for roughly 80% of CEMP stars). The new candidates also include substantial numbers of warmer carbon-enhanced stars, which were missed in previous HES searches for carbon stars due to selection criteria that emphasized cooler stars. A first subsample, biased toward brighter stars (B < 15.5), has been extracted from the scanned HES plates. After visual inspection (to eliminate spectra compromised by plate defects, overlapping spectra, etc., and to carry out rough spectral classifications), a list of 669 previously unidentified candidate CEMP stars was compiled. Follow-up spectroscopy for a pilot sample of 132 candidates was obtained with the Goodman spectrograph on the SOAR 4.1 m telescope. Our results show that most of the observed stars lie in the targeted metallicity range, and possess prominent carbon absorption features at 4300 angstrom. The success rate for the identification of new CEMP stars is 43% (13 out of 30) for [Fe/H] < -2.0. For stars with [Fe/H] < -2.5, the ratio increases to 80% (four out of five objects), including one star with [Fe/H] < -3.0.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aerosol samples were collected at a pasture site in the Amazon Basin as part of the project LBA-SMOCC-2002 (Large-Scale Biosphere-Atmosphere Experiment in Amazonia - Smoke Aerosols, Clouds, Rainfall and Climate: Aerosols from Biomass Burning Perturb Global and Regional Climate). Sampling was conducted during the late dry season, when the aerosol composition was dominated by biomass burning emissions, especially in the submicron fraction. A 13-stage Dekati low-pressure impactor (DLPI) was used to collect particles with nominal aerodynamic diameters (D(p)) ranging from 0.03 to 0.10 mu m. Gravimetric analyses of the DLPI substrates and filters were performed to obtain aerosol mass concentrations. The concentrations of total, apparent elemental, and organic carbon (TC, EC(a), and OC) were determined using thermal and thermal-optical analysis (TOA) methods. A light transmission method (LTM) was used to determine the concentration of equivalent black carbon (BC(e)) or the absorbing fraction at 880 nm for the size-resolved samples. During the dry period, due to the pervasive presence of fires in the region upwind of the sampling site, concentrations of fine aerosols (D(p) < 2.5 mu m: average 59.8 mu g m(-3)) were higher than coarse aerosols (D(p) > 2.5 mu m: 4.1 mu g m(-3)). Carbonaceous matter, estimated as the sum of the particulate organic matter (i.e., OC x 1.8) plus BC(e), comprised more than 90% to the total aerosol mass. Concentrations of EC(a) (estimated by thermal analysis with a correction for charring) and BC(e) (estimated by LTM) averaged 5.2 +/- 1.3 and 3.1 +/- 0.8 mu g m(-3), respectively. The determination of EC was improved by extracting water-soluble organic material from the samples, which reduced the average light absorption Angstrom exponent of particles in the size range of 0.1 to 1.0 mu m from >2.0 to approximately 1.2. The size-resolved BC(e) measured by the LTM showed a clear maximum between 0.4 and 0.6 mu m in diameter. The concentrations of OC and BC(e) varied diurnally during the dry period, and this variation is related to diurnal changes in boundary layer thickness and in fire frequency.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The formation of one-dimensional carbon chains from graphene nanoribbons is investigated using ab initio molecular dynamics. We show under what conditions it is possible to obtain a linear atomic chain via pulling of the graphene nanoribbons. The presence of dimers composed of two-coordinated carbon atoms at the edge of the ribbons is necessary for the formation of the linear chains, otherwise there is simply the full rupture of the structure. The presence of Stone-Wales defects close to these dimers may lead to the formation of longer chains. The local atomic configuration of the suspended atoms indicates the formation of single and triple bonds, which is a characteristic of polyynes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report a highly efficient switch built from an organic molecule assembled between single-wall carbon nanotube electrodes. We theoretically show that changes in the distance between the electrodes alter the molecular conformation within the gap, affecting in a dramatic way the electronic and charge transport properties, with an on/off ratio larger than 300. This opens up the perspective of combining molecular electronics with carbon nanotubes, bringing great possibilities for the design of nanodevices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nitrogen-doped carbon nanotubes can provide reactive sites on the porphyrin-like defects. It is well known that many porphyrins have transition-metal atoms, and we have explored transition-metal atoms bonded to those porphyrin-like defects inN-doped carbon nanotubes. The electronic structure and transport are analyzed by means of a combination of density functional theory and recursive Green's function methods. The results determined the heme B-like defect (an iron atom bonded to four nitrogens) is the most stable and has a higher polarization current for a single defect. With randomly positioned heme B defects in nanotubes a few hundred nanometers long, the polarization reaches near 100%, meaning they are effective spin filters. A disorder-induced magnetoresistance effect is also observed in those long nanotubes, and values as high as 20 000% are calculated with nonmagnectic eletrodes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the fabrication of a nanothick Co-modified film electrochemically synthesized on layer-by-layer (LbL) structures made with dendrimer polyamidoamine/carbon nanotubes (PAMAM/CNT), and its electrocatalytic properties toward H(2)O(2) reduction. Scanning electron microscopy indicated the formation of a homogeneous, 14 nm thick Co film. The porous nature of the PAMAM/CNT LbL film allowed the electrolyte access to the bottom of the electrode, generating a homogenous Co electrodeposit. In addition, the nanostructure based on Co-modified PAMAM/CNT LbL exhibited high electrocatalytic activity for H(2)O(2) reduction when compared to the Co-free PAMAM/CNT LbL film, which demonstrates the suitability of the system studied for biosensing. (C) 2011 The Electrochemical Society. [DOI: 10.1149/1.3602200] All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present results of the CO(2)/carbonate system from the BIOSOPE cruise in the Eastern South Pacific Ocean, in an area not sampled previously. In particular, we present estimates of the anthropogenic carbon (C(ant)(TrOCA)) distribution in the upper 1000m of this region using the TrOCA method. The highest concentrations of C(ant)(TrOCA) found around 13 degrees S, 132 degrees W and 32 degrees S, 91 degrees W, are higher than 80 mu mol.kg(-)1 and 70 mu mol.kg(-1), respectively. The lowest concentrations are observed below 800m depth (<= 2 mu mol.kg(-1)) and within the Oxygen Minimum Zone (OMZ), mainly around 140 degrees W (< 11 mu mol.kg(-1)). As a result of the anthropogenic carbon penetration there has been decrease in pH by over 0.1 on an average in the upper 200 m. This work further improves our understanding on the penetration of anthropogenic carbon in the Eastern Pacific Ocean.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electrocatalytic reduction of hydrogen peroxide on a glassy carbon (GC) electrode modified with a ruthenium oxide hexacyanoferrate (RuOHCF) was investigated using rotating disc electrode (RDE) voltammetry aiming to improve the performance of the sensor for hydrogen peroxide detection. The influence of parameters such as rotation speed, film thickness and hydrogen peroxide concentration indicated that the rate of the cross-chemical reaction between Ru(II) centres immobilized into the film and hydrogen peroxide controls the overall process. The kinetic regime could be classified as LSk mechanism, according to the diagnostic table proposed by Albery and Hillman, and the kinetic constant of the mediated process was found to be 706 mol(-1) cm(3) s(-1). In the LSk case the reaction layer is located at a finite layer close to the modifier layer/solution interface

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Physical and electrochemical properties of nanostructured Ni-doped manganese oxides (MnO(x)) catalysts supported on different carbon powder substrates were investigated so as to characterize any carbon substrate effect toward the oxygen reduction reaction (ORR) kinetics in alkaline medium. These NiMnO(x)/C materials were characterized using physicochemical analyses. Small insertion of Ni atoms in the MnO(x) lattice was observed, which consists of a true doping of the manganese oxide phase. The corresponding NiMnO(x) phase is present in the form of needles or agglomerates, with crystallite sizes in the order of 1.5-6.7 nm (from x-ray diffraction analyses). Layered manganite (MnOOH) phase has been detected for the Monarch 1000-supported NiMnO(x) material, while different species of MnO(x) phases are present at the E350G and MM225 carbons. Electrochemical studies in thin porous coating active layers in the rotating ring-disk electrode setup revealed that the MnO(x) catalysts present better ORR kinetics and electrochemical stability upon Ni doping. The ORR follows the so-called peroxide mechanism on MnO(x)/C catalysts, with the occurrence of minority HO(2)(-) disproportionation reaction. The HO(2)(-) disproportionation reaction progressively increases with the Ni content in NiMnO(x) materials. The catalysts supported on the MM225 and E350G carbons promote faster disproportionation reaction, thus leading to an overall four-electron ORR pathway. (C) 2011 The Electrochemical Society. [DOI: 10.1149/1.3528439] All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Black carbon (BC) may play ail important role in the global C budget, due to its potential to act as a significant sink of atmospheric CO(2). In order to fully evaluate the influence of BC oil the global C cycle, in understanding of the stability of BC is required. The biochemical stability of BC was assessed in a chronosequence of high-BC-containing Anthrosols from the central Amazon, Brazil, using a range of spectroscopic and biological methods. Results revealed that the Anthrosols had 61-80% lower (P < 0.05) CO(2) evolution per unit C over 532 days compared to their respective adjacent soils with low BC contents. No significant (P > 0.05) difference in CO(2) respiration per unit C was observed between Anthrosols with contrasting ages of BC (600-8700 years BP) Lind soil textures (0.3-36% clay). Similarly, the molecular composition of the core regions of micrometer-sized BC particles quantified by synchrotron-based Near-Edge X-ray Fine Structure (NEXAFS) spectroscopy coupled to Scanning Transmission X-ray Microscopy (STXM) remained similar regardless of their ages and closely resembled the spectral characteristics or fresh BC. BC decomposed extremely slowly to ail extent that it was not possible to detect chemical changes between Youngest and oldest samples, as also confirmed by X-ray Photoelectron Spectroscopy (XPS). Deconvolution of NEXAFS spectra revealed greater oxidation oil the surfaces of BC particles with little penetration into the core of the particles. The similar C mineralization between different BC-rich soils regardless of soil texture underpins the importance of chemical recalcitrance for the stability of BC, in contrast to adjacent soils which showed the highest mineralization in the sandiest soil. However, the BC-rich Anthrosols had higher proportions (72-90%) of C in the more stable organo-mineral fraction than BC-poor adjacent soils (2-70%), Suggesting some degree of physical stabilization. (c) 2008 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tropical ecosystems play a large and complex role in the global carbon cycle. Clearing of natural ecosystems for agriculture leads to large pulses of CO(2) to the atmosphere from terrestrial biomass. Concurrently, the remaining intact ecosystems, especially tropical forests, may be sequestering a large amount of carbon from the atmosphere in response to global environmental changes including climate changes and an increase in atmospheric CO(2). Here we use an approach that integrates census-based historical land use reconstructions, remote-sensing-based contemporary land use change analyses, and simulation modeling of terrestrial biogeochemistry to estimate the net carbon balance over the period 1901-2006 for the state of Mato Grosso, Brazil, which is one of the most rapidly changing agricultural frontiers in the world. By the end of this period, we estimate that of the state`s 925 225 km(2), 221 092 km(2) have been converted to pastures and 89 533 km(2) have been converted to croplands, with forest-to-pasture conversions being the dominant land use trajectory but with recent transitions to croplands increasing rapidly in the last decade. These conversions have led to a cumulative release of 4.8 Pg C to the atmosphere, with similar to 80% from forest clearing and 20% from the clearing of cerrado. Over the same period, we estimate that the residual undisturbed ecosystems accumulated 0.3 Pg C in response to CO2 fertilization. Therefore, the net emissions of carbon from Mato Grosso over this period were 4.5 Pg C. Net carbon emissions from Mato Grosso since 2000 averaged 146 Tg C/yr, on the order of Brazil`s fossil fuel emissions during this period. These emissions were associated with the expansion of croplands to grow soybeans. While alternative management regimes in croplands, including tillage, fertilization, and cropping patterns promote carbon storage in ecosystems, they remain a small portion of the net carbon balance for the region. This detailed accounting of a region`s carbon balance is the type of foundation analysis needed by the new United Nations Collaborative Programmme for Reducing Emissions from Deforestation and Forest Degradation (REDD).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Agricultural management practices that promote net carbon (C) accumulation in the soil have been considered as an important potential mitigation option to combat global warming. The change in the sugarcane harvesting system, to one which incorporates C into the soil from crop residues, is the focus of this work. The main objective was to assess and discuss the changes in soil organic C stocks caused by the conversion of burnt to unburnt sugarcane harvesting systems in Brazil, when considering the main soils and climates associated with this crop. For this purpose, a dataset was obtained from a literature review of soils under sugarcane in Brazil. Although not necessarily from experimental studies, only paired comparisons were examined, and for each site the dominant soil type, topography and climate were similar. The results show a mean annual C accumulation rate of 1.5 Mg ha-1 year-1 for the surface to 30-cm depth (0.73 and 2.04 Mg ha-1 year-1 for sandy and clay soils, respectively) caused by the conversion from a burnt to an unburnt sugarcane harvesting system. The findings suggest that soil should be included in future studies related to life cycle assessment and C footprint of Brazilian sugarcane ethanol.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Outgassing of carbon dioxide (CO(2)) from rivers and streams to the atmosphere is a major loss term in the coupled terrestrial-aquatic carbon cycle of major low-gradient river systems (the term ""river system"" encompasses the rivers and streams of all sizes that compose the drainage network in a river basin). However, the magnitude and controls on this important carbon flux are not well quantified. We measured carbon dioxide flux rates (F(CO2)), gas transfer velocity (k), and partial pressures (p(CO2)) in rivers and streams of the Amazon and Mekong river systems in South America and Southeast Asia, respectively. F(CO2) and k values were significantly higher in small rivers and streams (channels <100 m wide) than in large rivers (channels >100 m wide). Small rivers and streams also had substantially higher variability in k values than large rivers. Observed F(CO2) and k values suggest that previous estimates of basinwide CO(2) evasion from tropical rivers and wetlands have been conservative and are likely to be revised upward substantially in the future. Data from the present study combined with data compiled from the literature collectively suggest that the physical control of gas exchange velocities and fluxes in low-gradient river systems makes a transition from the dominance of wind control at the largest spatial scales (in estuaries and river mainstems) toward increasing importance of water current velocity and depth at progressively smaller channel dimensions upstream. These results highlight the importance of incorporating scale-appropriate k values into basinwide models of whole ecosystem carbon balance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

No-tillage mulch-based (NTM) cropping systems have been widely adopted by farmers in the Brazilian savanna region (Cerrado biome). We hypothesized that this new type of management should have a profound impact on soil organic carbon (SOC) at regional scale and consequently on climate change mitigation. The objective of this study was thus to quantify the SOC storage potential of NTM in the oxisols of the Cerrado using a synchronic approach that is based on a chronosequence of fields of different years under NTM. The study consisted of three phases: (1) a farm/cropping system survey to identify the main types of NTM systems to be chosen for the chronosequence; (2) a field survey to identify a homogeneous set of situations for the chronosequence and (3) the characterization of the chronosequence to assess the SOC storage potential. The main NTM system practiced by farmers is an annual succession of soybean (Glycine max)or maize (Zea mays) with another cereal crop. This cropping system covers 54% of the total cultivated area in the region. At the regional level, soil organic C concentrations from NTM fields were closely correlated with clay + silt content of the soil (r(2) = 0.64). No significant correlation was observed (r(2) = 0.07), however, between these two variables when we only considered the fields with a clay + silt content in the 500-700 g kg(-1) range. The final chronosequence of NTM fields was therefore based on a subsample of eight fields, within this textural range. The SOC stocks in the 0-30 cm topsoil layer of these selected fields varied between 4.2 and 6.7 kg C m(-2) and increased on average (r(2) = 0.97) with 0.19 kg C m(-2) year(-1). After 12 years of NTM management, SOC stocks were no longer significantly different from the stocks under natural Cerrado vegetation (p < 0.05), whereas a 23-year-old conventionally tilled and cropped field showed SOC stocks that were about 30% below this level. Confirming our hypotheses, this study clearly illustrated the high potential of NTM systems in increasing SOC storage under tropical conditions, and how a synchronic approach may be used to assess efficiently such modification on farmers` fields, identifying and excluding non desirable sources of heterogeneity (management, soils and climate). (C) 2010 Elsevier B.V. All rights reserved.