26 resultados para gap creation
Resumo:
Purpose: The aversive nature of regenerative milieu is the main problem related to the failure of neuronal restoration in the injured spinal cord which however might be addressed with an adequate repair intervention. We evaluated whether glial cell line-derived neurotrophic factor (GDNF) may increase the ability of sciatic nerve graft, placed in a gap promoted by complete transections of the spinal cord, to enhance motor recovery and local fiber growth. Methods: Rats received a 4 mm-long gap at low thoracic level and were repaired with a fragment of the sciatic nerve. GDNF was added (NERVE+GDNF) or not to the grafts (NERVE-GDNF). Motor behavior score (BBB) and sensorimotor tests-linked to the combined behavior score (CBS), which indicate the degree of the motor improvement and the percentage of functional deficit, respectively, and also the spontaneous motor behavior in an open field by means of an infrared motion sensor activity monitor were analyzed. At the end of the third month post surgery, the tissue composed by the graft and the adjacent regions of the spinal cord was removed and submitted to the immunohistochemistry of the neurofilament-200 (NF-200), growth associated protein-43 (GAP-43), microtubule associated protein-2 (MAP-2), 5-hidroxytryptamine (serotonin, 5-HT) and calcitonin gene related peptide (CGRP). The immunoreactive fibers were quantified at the epicenter of the graft by means of stereological procedures. Results: Higher BBB and lower CBS levels (p < 0.001) were found in NERVE+GDNF rats. GDNF added to the graft increased the levels of individual sensorimotor tests mainly at the third month. Analysis of the spontaneous motor behavior showed decreases in the time and number of small movement events by the third month without changes in time and number of large movement events in the NERVE+GDNF rats. Immunoreactive fibers were encountered inside the grafts and higher amounts of NF-200, GAP-43 and MAP-2 fibers were found in the epicenter of the graft when GDNF was added. A small amount of descending 5-HT fibers was seen reentering in the adjacent caudal levels of the spinal cords which were grafted in the presence of GDNF, event that has not occurred without the neurotrophic factor. GDNF in the graft also led to a large amount of MAP-2 perikarya and fibers in the caudal levels of the cord gray matter, as determined by the microdensitometric image analysis. Conclusions: GDNF added to the nerve graft favored the motor recovery, local neuronal fiber growth and neuroplasticity in the adjacent spinal cord.
Resumo:
Cleft lip and palate (CLP) is the most common congenital defect of the face. Many animal models have been utilized to study embryogenesis and pathogenesis of CLP, including the development of secondary anomalies and consequent deformities. However, the ideal gestational age for surgical creation of lip or palate defects in rat models has never been determined. The aim of the present study is to improve the experimental model utilizing rat fetuses, defining the most appropriate timing for creation of the lip defect model. The study was composed of three groups of fetuses undergoing surgical creation of a lip defect at the left side of the superior lip at 17.5, 18.5, and 19.5 days of gestation. Fetuses were harvested at 21.5 days of gestation (term = 22 days) and underwent macroscopic and microscopic analyses. We found that the most appropriate moment for lip defect creation was at 19.5 days, given the presence of lip depression at the site of the defect and asymmetry and retraction associated with interruption of the lip and complete reepithelialization of the borders of the defect.
Resumo:
Gap junctional intercellular communication (GJIC) and connexin expression (Cx26 and Cx32) in mouse liver were studied after administration of 4-bis[2-(3,5 dichloropyridyloxy)]benzene (TCPOBOP), a phenobarbital-like enzyme inducer. Female C57BI/6 mice were administered TCPOBOP (5.8 mg/kg BW) and euthanized 0, 24, 48 and 72 hours later. Liver samples were snap frozen, or fixed in formalin, or submitted to GJIC analysis. The proliferating cell nuclear antigen (PCNA) immunohistochemistry and the Western blotting for Cx26 and Cx32 were performed. After 48 and 72 h of drug administration the liver-to-body weight ratio was increased 70% and 117% (p < 0.0001), respectively. There were temporal-dependent alterations in liver histopathology and a significant increase in cell proliferation was noted after 48h and sustained after 72h, though to a lesser extent (p < 0.0001). In addition. TCPOBOP administration induced apoptosis, which appeared to be time-dependent showing statistical significance only after 72h (p < 0.0001). Interestingly, a transient disruption by nearly 50% of GJIC capacity was detected after 48 h of drug ingestion, which recovered after 72 h (p = 0.003). These GJIC changes were due to altered levels of Cx26 and Cx32 in the livers of TCPOBOP-treated mice. We concluded that a single administration of TCPOBOP transiently disrupted the levels of GJIC due to decreased expression of connexins and increased apoptotic cell death in mouse liver. (C) 2009 Elsevier GmbH. All rights reserved.
Resumo:
The problem of cosmological particle creation for a spatially flat, homogeneous and isotropic universes is discussed in the context of f (R) theories of gravity. Different from cosmological models based on general relativity theory, it is found that a conformal invariant metric does not forbid the creation of massless particles during the early stages (radiation era) of the universe. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The Large Magellanic Cloud (LMC) has a rich star cluster system spanning a wide range of ages and masses. One striking feature of the LMC cluster system is the existence of an age gap between 3 and 10 Gyr. But this feature is not clearly seen among field stars. Three LMC fields containing relatively poor and sparse clusters whose integrated colours are consistent with those of intermediate-age simple stellar populations have been imaged in BVI with the Optical Imager (SOI) at the Southern Telescope for Astrophysical Research (SOAR). A total of six clusters, five of them with estimated initial masses M < 104 M(circle dot), were studied in these fields. Photometry was performed and colour-magnitude diagrams (CMDs) were built using standard point spread function fitting methods. The faintest stars measured reach V similar to 23. The CMD was cleaned from field contamination by making use of the three-dimensional colour and magnitude space available in order to select stars in excess relative to the field. A statistical CMD comparison method was developed for this purpose. The subtraction method has proven to be successful, yielding cleaned CMDs consistent with a simple stellar population. The intermediate-age candidates were found to be the oldest in our sample, with ages between 1 and 2 Gyr. The remaining clusters found in the SOAR/SOI have ages ranging from 100 to 200 Myr. Our analysis has conclusively shown that none of the relatively low-mass clusters studied by us belongs to the LMC age gap.
Resumo:
We used the H i data from the LAB Survey to map the ring-shaped gap in H i density that lies slightly outside the solar circle. Adopting R(0) = 7.5 kpc, we find an average gap radius of 8.3 kpc and an average gap width of 0.8 kpc. The characteristics of the H i gap correspond closely to the expected ones, as predicted by theory and by numerical simulations of the gas flow near the corotation resonance.
Resumo:
Recently, de Roany and Pacheco (Gen Relativ Gravit, doi:10.1007/s10714-010-1069-2) performed a Newtonian analysis on the evolution of perturbations for a class of relativistic cosmological models with Creation of Cold Dark Matter (CCDM) proposed by the present authors (Lima et al. in JCAP 1011:027, 2010). In this note we demonstrate that the basic equations adopted in their work do not recover the specific (unperturbed) CCDM model. Unlike to what happens in the original CCDM cosmology, their basic conclusions refer to a decelerating cosmological model in which there is no transition from a decelerating to an accelerating regime as required by SNe type Ia and complementary observations.
Resumo:
One of the main consequences of habitat loss and fragmentation is the increase in patch isolation and the consequent decrease in landscape connectivity. In this context, species persistence depends on their responses to this new landscape configuration, particularly on their capacity to move through the interhabitat matrix. Here, we aimed first to determine gap-crossing probabilities related to different gap widths for two forest birds (Thamnophilus caerulescens, Thamnophilidae, and Basileuterus culicivorus, Parulidae) from the Brazilian Atlantic rainforest. These values were defined with a playback technique and then used in analyses based on graph theory to determine functional connections among forest patches. Both species were capable of crossing forest gaps between patches, and these movements were related to gap width. The probability of crossing 40 m gaps was 50% for both species. This probability falls to 10% when the gaps are 60 m (for B. culicivorus) or 80 m (for T caerulescens). Actually, birds responded to stimulation about two times more distant inside forest trials (control) than in gap-crossing trials. Models that included gap-crossing capacity improved the explanatory power of species abundance variation in comparison to strictly structural models based merely on patch area and distance measurements. These results highlighted that even very simple functional connectivity measurements related to gap-crossing capacity can improve the understanding of the effect of habitat fragmentation on bird occurrence and abundance.
Resumo:
The magnetic response of the near-band-edge optical properties is studied in EuTe layers. In several magneto-optical experiments, the absorption and emission are described as well as the related Stokes shift. Specifically, we present the first experimental report of the photoluminescence excitation (PLE) spectrum in Faraday configuration. The PLE spectra shows to be related with the absorption spectra through the observation of resonance between the excitation light and the zero-field band-gap. A new emission line appears at 1.6 eV at a moderate magnetic field in the photoluminescence (PL) spectra. Furthermore, we examine the absorption and PL red-shift induced by the magnetic field in the light of the d-f exchange interaction energy involved in these processes. Whereas the absorption red-shift shows a quadratic dependence on the field, the PL red-shift shows a linear dependence which is explained by spin relaxation of the excited state.
Resumo:
In this work we investigate the dynamical Casimir effect in a nonideal cavity by deriving an effective Hamiltonian. We first compute a general expression for the average number of particle creation, applicable for any law of motion of the cavity boundary, under the only restriction of small velocities. We also compute a general expression for the linear entropy of an arbitrary state prepared in a selected mode, also applicable for any law of motion of a slow moving boundary. As an application of our results we have analyzed both the average number of particle creation and linear entropy within a particular oscillatory motion of the cavity boundary. On the basis of these expressions we develop a comprehensive analysis of the resonances in the number of particle creation in the nonideal dynamical Casimir effect. We also demonstrate the occurrence of resonances in the loss of purity of the initial state and estimate the decoherence times associated with these resonances. Since our results were obtained in the framework of the perturbation theory, they are restricted, under resonant conditions, to a short-time approximation. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
The nonequilibrium phase transition of the one-dimensional triplet-creation model is investigated using the n-site approximation scheme. We find that the phase diagram in the space of parameters (gamma, D), where gamma is the particle decay probability and D is the diffusion probability, exhibits a tricritical point for n >= 4. However, the fitting of the tricritical coordinates (gamma(t), D(t)) using data for 4 <= n <= 13 predicts that gamma(t) becomes negative for n >= 26, indicating thus that the phase transition is always continuous in the limit n -> infinity. However, the large discrepancies between the critical parameters obtained in this limit and those obtained by Monte Carlo simulations, as well as a puzzling non-monotonic dependence of these parameters on the order of the approximation n, argue for the inadequacy of the n-site approximation to study the triplet-creation model for computationally feasible values of n.