19 resultados para excision
Resumo:
Two new complexes of platinum(II) and silver(I) with acesulfame were synthesized. Acesulfame is in the anionic form acesulfamate (ace). The structures of both complexes were determined by X-ray crystallography. For K(2)[PtCl(2)(ace)(2)] the platinum atom is coordinated to two Cl(-) and two N-acesulfamate atoms forming a trans-square planar geometry. Each K(+) ion interacts with two oxygen atoms of the S(=O)(2) group of each acesulfamate. For the polymeric complex [Ag(ace)](n) the water molecule bridges between two crystallographic equivalent Agl atoms which are related each other by a twofold symmetry axis. Two Agl atoms, related to each other by a symmetry centre, make bond contact with two equivalent oxygen atoms. These bonds give rise to infinite chains along the unit cell diagonal in the ac plane. The in vitro cytotoxic analyses for the platinum complex using HeLa (human cervix cancer) cells show its low activity when compared to the vehicle-treated cells. The Ag(I) complex submitted to in vitro antimycobacterial tests, using the Microplate Alamar Blue (MABA) method, showed a good activity against Mycobacterium tuberculosis, responsible for tuberculosis, with a minimal inhibitory concentration (MIC) value of 11.6 mu M. The Ag(I) complex also presented a promising activity against Gram negative (Escherichia colt and Pseudomonas aeruginosa) and Gram positive (Enterococcus faecalis) microorganisms. The complex K(2)[PtCl(2)(ace)(2)] was also evaluated for antiviral properties against dengue virus type 2 (New Guinea C strain) in Vero cells and showed a good inhibition of dengue virus type 2 (New Guinea G strain) replication at 200 mu M, when compared to vehicle-treated cells. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Oxidative DNA damage plays a role in disease development and the aging process. A prominent participant in orchestrating the repair of oxidative DNA damage, particularly single-strand breaks, is the scaffold protein XRCC1. A series of chronological and biological aging parameters in XRCC1 heterozygous (HZ) mice were examined. HZ and wild-type (WT) C57BL/6 mice exhibit a similar median lifespan of similar to 26 months and a nearly identical maximal life expectancy of similar to 37 months. However, a number of HZ animals (7 of 92) showed a propensity for abdominal organ rupture, which may stem from developmental abnormalities given the prominent role of XRCC1 in endoderm and mesoderm formation. For other end-points evaluated-weight, fat composition, blood chemistries, condition of major organs, tissues and relevant cell types, behavior, brain volume and function, and chromosome and telomere integrity-HZ mice exhibited by-and-large a normal phenotype. Treatment of animals with the alkylating agent azoxymethane resulted in both liver toxicity and an increased incidence of precancerous lesions in the colon of HZ mice. Our study indicates that XRCC1 haploinsufficiency in mammals has little effect on chronological longevity and many key biological markers of aging in the absence of environmental challenges, but may adversely affect normal animal development or increase disease susceptibility to a relevant genotoxic exposure.
Resumo:
Cockayne syndrome (CS) is a human genetic disorder characterized by sensitivity to UV radiation, neurodegeneration, premature aging among other phenotypes. CS complementation group B (CS-B) gene (csb) encodes the CSB protein (CSB) that is involved in base excision repair of a number of oxidatively induced lesions in genomic DNA in vivo. We hypothesized that CSB may also play a role in cellular repair of the DNA helix-distorting tandem lesion (5`S)-8,5`-cyclo-2`-deoxyadenosine (S-cdA). Among many DNA lesions. S-cdA is unique in that it represents a concomitant damage to both the sugar and base moieties of the same nucleoside. Because of the presence of the C8-C5` covalent bond, S-cdA is repaired by nucleotide excision repair unlike most of other oxidatively induced lesions in DNA, which are subject to base excision repair. To test our hypothesis, we isolated genomic DNA from brain, kidney and liver of wild type and csb knockout (csb(-/-)) mice. Animals were not exposed to any exogenous oxidative stress before the experiment. DNA samples were analysed by liquid chromatography/mass spectrometry with isotope-dilution. Statistically greater background levels of S-cdA were observed in all three organs of csb(-/-) mice than in those of wild type mice. These results suggest the in vivo accumulation of S-cdA in genomic DNA due to lack of its repair in csb(-/-) mice. Thus, this study provides, for the first time, the evidence that CSB plays a role in the repair of the DNA helix-distorting tandem lesion S-cdA. Accumulation of unrepaired S-cdA in vivo may contribute to the pathology associated with CS. Published by Elsevier B.V.
Resumo:
7,8-Dihydro-8-oxoguanine DNA glycosylase (OGG1) is a major DNA glycosylase involved in base-excision repair (BER) of oxidative DNA damage to nuclear and mitochondrial DNA (mtDNA). We used OGG1-deficient (OGG1(-/-)) mice to examine the possible roles of OGG1 in the vulnerability of neurons to ischemic and oxidative stress. After exposure of cultured neurons to oxidative and metabolic stress levels of OGG1 in the nucleus were elevated and mitochondria exhibited fragmentation and increased levels of the mitochondrial fission protein dynamin-related protein 1 (Drp1) and reduced membrane potential. Cortical neurons isolated from OGG1(-/-) mice were more vulnerable to oxidative insults than were OGG1(+/+) neurons, and OGG1(-/-) mice developed larger cortical infarcts and behavioral deficits after permanent middle cerebral artery occlusion compared with OGG1(+/+) mice. Accumulations of oxidative DNA base lesions (8-oxoG, FapyAde, and FapyGua) were elevated in response to ischemia in both the ipsilateral and contralateral hemispheres, and to a greater extent in the contralateral cortex of OGG1(-/-) mice compared with OGG1(+/+) mice. Ischemia-induced elevation of 8-oxoG incision activity involved increased levels of a nuclear isoform OGG1, suggesting an adaptive response to oxidative nuclear DNA damage. Thus, OGG1 has a pivotal role in repairing oxidative damage to nuclear DNA under ischemic conditions, thereby reducing brain damage and improving functional outcome. Journal of Cerebral Blood Flow & Metabolism (2011) 31, 680-692; doi:10.1038/jcbfm.2010.147; published online 25 August 2010