93 resultados para epsilon antitoxin
Resumo:
Protein kinase C beta II (PKC beta II) levels increase in the myocardium of patients with end-stage heart failure (HF). Also targeted overexpression of PKC beta II in the myocardium of mice leads to dilated cardiomyopathy associated with inflammation, fibrosis and myocardial dysfunction. These reports suggest a deleterious role of PKC beta II in HF development. Using a post-myocardial infarction (MI) model of HF in rats, we determined the benefit of chronic inhibition of PKC beta II on the progression of HF over a period of 6 weeks after the onset of symptoms and the cellular basis for these effects. Four weeks after MI, rats with HF signs that were treated for 6 weeks with the PKC beta II selective inhibitor (beta IIV5-3 conjugated to TAT(47-57) carrier peptide) (3 mg/kg/day) showed improved fractional shortening (from 21% to 35%) compared to control (TAT(47-57) carrier peptide alone). Formalin-fixed mid-ventricle tissue sections stained with picrosirius red, haematoxylin and eosin and toluidine blue dyes exhibited a 150% decrease in collagen deposition, a two-fold decrease in inflammation and a 30% reduction in mast cell degranulation, respectively, in rat hearts treated with the selective PKC beta II inhibitor. Further, a 90% decrease in active TGF beta 1 and a significant reduction in SMAD2/3 phosphorylation indicated that the selective inhibition of PKC beta II attenuates cardiac remodelling mediated by the TGF-SMAD signalling pathway. Therefore, sustained selective inhibition of PKC beta II in a post-MI HF rat model improves cardiac function and is associated with inhibition of pathological myocardial remodelling.
Resumo:
The objective of the present work is to propose a numerical and statistical approach, using computational fluid dynamics, for the study of the atmospheric pollutant dispersion. Modifications in the standard k-epsilon turbulence model and additional equations for the calculation of the variance of concentration are introduced to enhance the prediction of the flow field and scalar quantities. The flow field, the mean concentration and the variance of a flow over a two-dimensional triangular hill, with a finite-size point pollutant source, are calculated by a finite volume code and compared with published experimental results. A modified low Reynolds k-epsilon turbulence model was employed in this work, using the constant of the k-epsilon model C(mu)=0.03 to take into account the inactive atmospheric turbulence. The numerical results for the velocity profiles and the position of the reattachment point are in good agreement with the experimental results. The results for the mean and the variance of the concentration are also in good agreement with experimental results from the literature. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The paper presents the results of a complementary study including magnetic hysteresis loops B(H), magnetic Barkhausen noise (MBN) and magnetoacoustic emission (MAE) signals measurements for plastically deformed Fe-2%Si samples. The investigated samples had been plastically deformed with plastic strain level (epsilon(p)) up to 8%. The properties of B(H) loops are quantified using the coercivity H(C) and maximum differential permeability mu(rmax) as parameters. The MBN and MAE voltage signals were analysed by means of rms-like voltage (Ub and Ua, respectively) envelopes, plotted as a function of applied field strength. Integrals of the Ub and Ua voltages over half of a period of magnetization were then calculated. It has been found that He and integrals of Ub increase, while mu(rmax) decreases monotonically with increasing epsilon(p). The MAE (Ua) peak voltage at first decreases, then peaks at epsilon(p) approximate to 1.5% and finally decreases again. The integral of the Ua voltage at first increases for low epsilon(p) and then decreases for epsilon(p) > 1.5%. All those various dependence types suggest the possibility of detection of various stages of microstructure change. The above-mentioned results are discussed qualitatively in the paper. Some modelling of the discussed dependency is also presented. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
This paper presents the results of the in-depth study of the Barkhausen effect signal properties for the plastically deformed Fe-2%Si samples. The investigated samples have been deformed by cold rolling up to plastic strain epsilon(p) = 8%. The first approach consisted of time-domain-resolved pulse and frequency analysis of the Barkhausen noise signals whereas the complementary study consisted of the time-resolved pulse count analysis as well as a total pulse count. The latter included determination of time distribution of pulses for different threshold voltage levels as well as the total pulse count as a function of both the amplitude and the duration time of the pulses. The obtained results suggest that the observed increase in the Barkhausen noise signal intensity as a function of deformation level is mainly due to the increase in the number of bigger pulses.
Resumo:
Gamma ray tomography experiments have been carried out to detect spatial patterns in the porosity in a 0.27 m diameter column packed with steel Rashig rings of different sizes: 12.6, 37.9, and 76 mm. using a first generation CT system (Chen et al., 1998). A fast Fourier transform tomographic reconstruction algorithm has been used to calculate the spatial variation over the column cross section. Cross-sectional gas porosity and solid holdup distribution were determinate. The values of cross-sectional average gas porosity were epsilon=0.849, 0.938 and 0.966 for the 12.6, 37.9, and 76 mm rings, respectively. Radial holdup variation within the packed bed has been determined. The variation of the circumferentially averaged gas holdup in the radial direction indicates that the porosity in the column wall region is a somewhat higher than that in the bulk region, due to the effect of the column wall. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
This paper deals with the expected discounted continuous control of piecewise deterministic Markov processes (PDMP`s) using a singular perturbation approach for dealing with rapidly oscillating parameters. The state space of the PDMP is written as the product of a finite set and a subset of the Euclidean space a""e (n) . The discrete part of the state, called the regime, characterizes the mode of operation of the physical system under consideration, and is supposed to have a fast (associated to a small parameter epsilon > 0) and a slow behavior. By using a similar approach as developed in Yin and Zhang (Continuous-Time Markov Chains and Applications: A Singular Perturbation Approach, Applications of Mathematics, vol. 37, Springer, New York, 1998, Chaps. 1 and 3) the idea in this paper is to reduce the number of regimes by considering an averaged model in which the regimes within the same class are aggregated through the quasi-stationary distribution so that the different states in this class are replaced by a single one. The main goal is to show that the value function of the control problem for the system driven by the perturbed Markov chain converges to the value function of this limit control problem as epsilon goes to zero. This convergence is obtained by, roughly speaking, showing that the infimum and supremum limits of the value functions satisfy two optimality inequalities as epsilon goes to zero. This enables us to show the result by invoking a uniqueness argument, without needing any kind of Lipschitz continuity condition.
Resumo:
The electronic absorption spectrum of fac[Mn(CO)(3)(phen)imH](+), fac-1 in CH(2)Cl(2) is characterized by a strong absorption band at 378 nm (epsilon(max) = 3200 mol(-1) L cm(-1)). On the basis of quantum mechanical calculations, the visible absorption band has been assigned to ligand-to-ligand charge-transfer (LLCT, im -> phen) and metal-to-ligand charge-transfer (MLCT, Mn -> phen) charge transfer transition. When fac-1 in CH(2)Cl(2) is irradiated with 350 nm continuous light, the absorption features are gradually shifted to represent those of the meridional complex mer-[Mn(CO)(3)(phen)imH](+), mer-1 (lambda(max) = 556 nm). The net photoreaction under these conditions is a photoisomerization, although, the presence of the long-lived radical species was also detected by (1)H NMR and FTIR spectroscopy. 355 nm continuous photolysis of fac-1 in CH(3)CN solution also gives the long-lived intermediate which is readly trapped by metylviologen (MV(2+)) giving rise to the formation of the one-electron reduced methyl viologen (MV(center dot+)). The UV-vis spectra monitored during the slow (45 min) thermal back reaction exhibited isosbestic conversion at 426 nm. On the basis of spectroscopic techniques and quantum mechanical calculations, the role of the radicals produced is analyzed.
Resumo:
Gangliosides are complex glycosphingolipids that are important in many biological processes. The present study investigated the role of gangliosides in the organization of lipid rafts in RBL-2H3 mast cells and in the modulation of mast cell degranulation via Fc epsilon RI. The role of gangliosides was examined using two ganglioside deficient cell lines (B6A4A2III-E5 and B6A4C1III-D1) as well as the parent cell line (RBL-2H3). All three cell lines examined express Fc epsilon RI, Lyn, Syk and LAT. However, only in RBL-2H3 cells were Fc epsilon RI, LAT and alpha-galactosyl derivatives of ganglioside GD(1b) mobilized to lipid raft domains following Fc epsilon RI stimulation. The inhibition of glycosphingolipid synthesis in RBL-2H3 cells also resulted in a decrease in the release of beta-hexosaminidase activity after Fc epsilon RI activation. The two mutant cell lines have a reduced release of beta-hexosaminidase activity after Fc epsilon RI stimulation, but not after exposure to calcium ionophore. These results indicate that the alpha-galactosyl derivatives of ganglioside GD(1b) are important in the initial events of Fc epsilon RI signaling upstream of Ca(2+) influx. Since the initial signaling events occur in lipid rafts and in the mutant cell lines the rafts are disorganized, these results also suggest that these gangliosides contribute to the correct assembly of lipid rafts and are essential for mast cell activation via Fc epsilon RI. (c) 2008 Published by Elsevier Inc.
Resumo:
Unloaded microspheres were prepared from polyhydroxybutyrate-co-valerate (PHBHV) and poly(epsilon-caprolactone) (PCL) polymers using the emulsification-solvent evaporation method (EE). The study was conducted to determine the ideal polymeric composition and ideal molecular weight for the microspheres preparation to be used as a Drug Delivery System (DDS) for cancer therapy. In this work, NzPC, a new photosensitizer, has been investigated when incorporated into microspheres of PHBHV/PCL evaluating its application for Photodynamic Therapy (PDT) of neoplastic tissue. The biodegradation studies were conducted to analyze the effects of the incorporation of the NzPC and also to determine the release profiles in vitro condition. We also evaluated the dark toxicity and the photobiological effect of the PHBHV-PCL microspheres in cutaneous melanoma cell line (B-16-A1) used as a biological neoplastic medium.
Resumo:
Background Meta-analysis is increasingly being employed as a screening procedure in large-scale association studies to select promising variants for follow-up studies. However, standard methods for meta-analysis require the assumption of an underlying genetic model, which is typically unknown a priori. This drawback can introduce model misspecifications, causing power to be suboptimal, or the evaluation of multiple genetic models, which augments the number of false-positive associations, ultimately leading to waste of resources with fruitless replication studies. We used simulated meta-analyses of large genetic association studies to investigate naive strategies of genetic model specification to optimize screenings of genome-wide meta-analysis signals for further replication. Methods Different methods, meta-analytical models and strategies were compared in terms of power and type-I error. Simulations were carried out for a binary trait in a wide range of true genetic models, genome-wide thresholds, minor allele frequencies (MAFs), odds ratios and between-study heterogeneity (tau(2)). Results Among the investigated strategies, a simple Bonferroni-corrected approach that fits both multiplicative and recessive models was found to be optimal in most examined scenarios, reducing the likelihood of false discoveries and enhancing power in scenarios with small MAFs either in the presence or in absence of heterogeneity. Nonetheless, this strategy is sensitive to tau(2) whenever the susceptibility allele is common (MAF epsilon 30%), resulting in an increased number of false-positive associations compared with an analysis that considers only the multiplicative model. Conclusion Invoking a simple Bonferroni adjustment and testing for both multiplicative and recessive models is fast and an optimal strategy in large meta-analysis-based screenings. However, care must be taken when examined variants are common, where specification of a multiplicative model alone may be preferable.
Resumo:
Background: Color Doppler myocardial imaging (CDMI) allows the calculation of local longitudinal or radial strain rate (SR) and strain (epsilon). The aims of this study were to determine the feasibility and reproducibility of longitudinal and radial SR and epsilon in neonates during the first hours of life and to establish reference values. Methods: Data were obtained from 55 healthy neonates (29 male; mean age, 20 +/- 14 hours; mean birth weight, 3,174 +/- 374 g). Apical and parasternal views quantified regional longitudinal and radial SR and epsilon in differing ventricular wall segments. Values at peak systole, early diastole, and late diastole were calculated from the extracted curves. CDMI data acquired at 300 +/- 50 frames/s were analyzed offline. Three consecutive cardiac cycles were measured during normal respiration. The timing of specific systolic or diastolic regional events was determined. Multiple comparisons between walls and segments were made. Results: Left ventricular (LV) longitudinal deformation showed basal differences compared with apical segments within one specific wall. Right ventricular (RV) longitudinal deformation was not homogeneous, with significant differences between basal and apical segments. Longitudinal 3 values were higher in the RV free basal and middle wall segments compared with the left ventricle. In the RV free wall apical segment, longitudinal SR and 3 were maximal. LV systolic SR and epsilon values were higher radially compared with longitudinally (radial peak systolic SR midportion, 2.9 +/- 0.6 s(-1); radial peak systolic epsilon 53.8 +/- 19%; longitudinal peak systolic SR midportion, -1.8 +/- 0.5 s(-1); longitudinal peak systolic epsilon, -24.8 +/- 3%; P < .01). Longitudinal systolic epsilon and SR interobserver variability values were 1.2% and 0.7%, respectively. Conclusion: Ultrasound-based SR and 3 imaging is a practical and reproducible clinical technique in neonates, allowing the calculation of regional longitudinal and radial deformation in RV and LV segments. These regional SR and epsilon indices represent new, noninvasive parameters that can quantify normal neonate regional cardiac function. Independent from visual interpretation, they can be used as reference values for diagnosis in ill neonates. (J Am Soc Echocardiogr 2009;22:369-375.)
Resumo:
Galectin-3 is a p-galactoside-binding lectin implicated in the fine-tuning of innate immunity. Rhodococcus equi, a facultative intracellular bacterium of macrophages, causes severe granulomatous bronchopneumonia in young horses and immunocompromised humans. The aim of this study is to investigate the role of galectin-3 in the innate resistance mechanism against R. equi infection. The bacterial challenge of galectin-3-deficient mice (gal3(-/-)) and their wild-type counterpart (gal3(+/+)) revealed that the LD50 for the gal3(-/-) mice was about seven times higher than that for the gal3(+/+) mice. When challenged with a sublethal dose, gal3(-/-) mice showed lower bacteria counts and higher production of IL-12 and IFN-gamma production, besides exhibiting a delayed although increased inflammatory reaction. Gal3(-/-) macrophages exhibited a decreased frequency of bacterial replication and survival, and higher transcript levels of IL-1 beta, IL-6, IL-10, TLR2 and MyD88. R. equi-infected gal3(+/+) macrophages showed decreased expression of TLR2, whereas R. equi-infected gal3(-/-) macrophages showed enhanced expression of this receptor. Furthermore, galectin-3 deficiency in macrophages may be responsible for the higher IL-1 beta serum levels detected in infected gal3(-/-) mice. Therefore galectin-3 may exert a regulatory role in innate immunity by diminishing IL-1 beta production and thus affecting resistance to R. equi infection.
Resumo:
Alzheimer disease (AD) is the most frequent cause of dementia in Western countries. Putative genetic risk factors for AD are polymorphisms in the apolipoprotein E (APOE) gene and in the low-density lipoprotein receptor-related protein (LRP) gene. Our objective was to investigate the role of the APOE coding region polymorphisms epsilon 2, epsilon 3, and epsilon 4 and APOE promoter variants A/T at position -491 and G/T at -219, as well as LRP polymorphism C/T, as risk factors for AD in Brazilian individuals. One hundred and twenty patients with probable AD, along with 120 controls were analyzed. A significant difference between patients and controls for 64 alleles was observed: frequency of this allele in AD was 0.31, and 0.10 in controls. Individuals with 2 FA alleles had a higher risk for AD than subjects with only 1 such allele; presence of 1 epsilon 2 allele proved protective. The presence of the T allele of the -219 polymorphism was also associated with an increased risk of AD, but this polymorphism is in linkage disequilibrium with APOE F polymorphisms. No significant differences between patients and controls were observed for -491 APOE or LRP polymorphisms. In this Brazilian population, both the epsilon 4 allele and T -219 polymorphism were associated with an increased risk for AD.
Resumo:
Background Basophils and mast cells are the main target cells in chronic idiopathic urticaria (CIU). Besides the basopenia, intrinsic defects of the anti-IgE cross-linking signalling pathway of basophils have been described in CIU. Objectives We sought to investigate the profile of expression of activation markers on basophils of patients with CIU and to explore the effect of interleukin (IL)-3 priming upon anti-IgE cross-linking stimuli through expression of activation markers and basophil histamine releasability. Methods Evaluation of the surface expression of Fc epsilon RI alpha, CD63, CD203c and CD123 on whole blood basophils of patients with CIU undergoing autologous serum skin test (ASST) was performed by flow cytometry. The effect of pretreatment with IL-3 in the anti-IgE response was analysed by the expression of basophil activation markers and histamine release using enzyme-linked immunosorbent assay. Results Blood basophils of patients with CIU were reduced in number and displayed increased surface expression of Fc epsilon RI alpha, which was positively correlated with the IgE serum levels. Upregulation of expression of both surface markers CD203c and CD63 was verified on basophils of patients with CIU, regardless of ASST response. High expression of IL-3 receptor on basophils was detected only in ASST+ patients with CIU. Pretreatment with IL-3 upregulated CD203c expression concomitantly with the excreting function of blood basophils and induced a quick hyper-responsiveness to anti-IgE cross-linking on basophils of patients with CIU compared with healthy controls. Conclusions Basophils of patients with CIU showed an activated profile, possibly due to an in vivo priming. Functionally, basophils have high responsiveness to IL-3 stimulation, thereby suggesting that defects in the signal transduction pathway after IgE cross-linking stimuli are recoverable in subjects with chronic urticaria.
Resumo:
Background: A significant proportion of patients with asthma have persistent symptoms despite treatment with inhaled glucocorticosteroids. Objective: We hypothesized that in these patients, the alveolar parenchyma is subjected to mast cell-associated alterations. Methods: Bronchial and transbronchial biopsies from healthy controls (n = 8), patients with allergic rhinitis (n = 8), and patients with atopic uncontrolled asthma (symptoms despite treatment with inhaled glucocorticosteroids; mean dose, 743 mu g/d; n = 14) were processed for immunohistochemical identification of mast cell subtypes and mast cell expression of Fc epsilon RI and surface-bound IgE. Results: Whereas no difference in density of total bronchial mast cells was observed between patients with asthma and healthy controls, the total alveolar mast cell density was increased in the patients with asthma (P < .01). Division into mast cell subtypes revealed that in bronchi of patients with asthma, tryptase positive mast cells (MC(T)) numbers decreased compared with controls (P <= .05), whereas tryptase and chymase positive mast cells (MC(TC)) increased (P <= .05). In the alveolar parenchyma from patients with asthma, an increased density was found for both MC(T) (P <= .05) and MC(TC) (P <= .05). The increased alveolar mast cell densities were paralleled by an increased mast cell expression of FceRI (P < .001) compared with the controls. The patients with asthma also had increased numbers (P < .001) and proportions (P < .001) of alveolar mast cells with surface-bound IgE. Similar increases in densities, FceRI expression, and surface-bound IgE were not seen in separate explorations of alveolar mast cells in patients with allergic rhinitis. Conclusion: Our data suggest that patients with atopic uncontrolled asthma have an increased parenchymal infiltration of MCT and MCTC populations with increased expression of FceRI and surface-bound IgE compared with atopic and nonatopic controls. (J Allergy Clin Immunol 2011;127:905-12.)