194 resultados para electrodes modified
Resumo:
In this work, a fast, non destructive voltammetric method for cocaine detection in acetonitrile medium using a platinum disk electrode chemically modified with cobalt-hexacyanoferrate (CoHCFe) film is described. The deposition of CoHCFe film at platinum disk (working electrode) was carried out in aqueous solution containing NaClO(4) at 0.1 mol L(-1) as supporting electrolite. Stability studies of the film and subsequent voltammetric analysis of cocaine were made in acetonitrile medium with NaClO4 at 0.1 mol L(-1) as supporting electrolite. A reversible interaction between cocaine and CoHCFe at the film produces a proportional decrease of original peak current, due to the formation of a complex between cocaine and cobalt ions, with subsequent partial passivation of the film surface, being the intensity of current decrease used as analytical signal for cocaine. A linear dependence of cocaine detection was carried out in the range from 2.4 x 10 x 4 to 1.5 x 10(-3) mol L(-1), with a linear correlation coefficient of 0.994 and a detection limit of 1.4 x 10 x 4 mol L(-1). The analysis of confiscated samples by the proposed method indicated cocaine levels from 37% to 95% (m/m) and these results were validated by comparison to HPLC technique, being obtained good correlation between both methods. (C) 2009 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Imbalance and weakness of the serratus anterior and upper trapezius force couple have been described in patients with shoulder dysfunction. There is interest in identifying exercises that selectively activate these muscles and including it in rehabilitation protocols. This study aims to verify the UT/SA electromyographic (EMG) amplitude ratio, performed in different upper limb exercises and on two bases of support. Twelve healthy men were tested (average age = 22.8 +/- 3.1 years), and surface EMG was recorded from the upper trapezius and serratus anterior using single differential surface electrodes. Volunteers performed isometric contractions over a stable base of support and on a Swiss ball during the wall push-up (WP), bench press (BP), and push-up (PU) exercises. All SEMG data are reported as a percentage of root mean square or integral of linear envelope from the maximal value obtained in one of three maximal voluntary contractions for each muscle studied. A linear mixed-effect model was performed to compare UT/SA ratio values. The WP, BP, and PU exercises showed UT/SA ratio mean +/- SD values of 0.69 +/- 0.72, 0.14 +/- 0.12, and 0.39 +/- 0.37 for stable surfaces, respectively, whereas for unstable surfaces, the values were 0.73 +/- 0.67, 0.43 +/- 0.39, and 0.32 +/- 0.30. The results demonstrate that UT/SA ratio was influenced by the exercises and by the upper limb base of support. The practical application is to show that BP on a stable surface is the exercise preferred over WP and PU on either surfaces for serratus anterior muscle training in patients with imbalance between the UT/SA force couple or serratus anterior weakness.
Resumo:
Three novel polymetallic ruthenium (III) meso-tetra(4-pyridyl)porphyrins containing peripheral ""RuCl(3)(dppb)"" moieties have been prepared and characterized. The X-ray structure of the tetraruthenated {NiTPyP[RuCl(3)(dppb)](4)} porphyrin complex crystallizes in the triclinic space group FT. This structure is discussed and compared with the crystal data for the mer-[RuCl(3)(dppb)(py)]. The {TPyP[RuCl(3)(dppb)](4)} and {CoTPyP[RuCl(3)(dppb)](4)} porphyrins were used to obtain electrogenerated films on ITO and glass carbon electrode surfaces, respectively. Such tetraruthenated porphyrins form films of a mixed-valence species {TPyP[Ru(dppb)](4)(mu Cl(3))(2)}(2)(4n2+) and {CoTPyP[Ru(dppb)](4)(mu Cl(3))(2)}(2n)(4n2+) on the electrode surface. The modified electrode with {CoTPyP[RuCl(3)(dppb)](4)} is very stable and can be used to detect organic substrates such as catechol.
Resumo:
We describe the development of a label free method to analyze the interactions between Ca(2+) and the porcine S100A12 protein immobilized on polyvinyl butyral (PVB). The modified gold electrodes were characterized using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM) and surface plasmon resonance (SPR) techniques. SEM analyses of PVB and PVB-S100A12 showed a heterogeneous distribution of PVB spherules on gold surface. EIS and CV measurements have shown that redox probe reactions on the modified gold electrodes were partially blocked due the adsorption of PVB-S100A12, and confirm the existence of a positive response of the immobilized S100Al2 to the presence of calcium ions. The biosensor exhibited a wide linear response to Ca(2+) concentrations ranging from 12.5 to 200 mM. The PVB-S100A12 seems to be bound to the gold electrode surface by physical adsorption: we observed an increase of 1184.32 m degrees in the SPR angle after the adsorption of the protein on the PVB surface (in an indication that 9.84 ng of S100A12 are adsorbed per mm(2) of the Au-PVB electrode), followed by a further increase of 581.66 m degrees after attachment of the Ca(2+) ions. In addition, no SPR response is obtained for non-specific ions. These studies might be useful as a platform for the design of new reusable and sensitive biosensing devices that could find use in the clinical applications. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
A carbon micro/nanostructured composite based on cup-stacked carbon nanotubes (CSCNTs) grown onto a carbon felt has been found to be an efficient matrix for enzyme immobilization and chemical signal transduction. The obtained CSCNT/felt was modified with a copper hexacyanoferrate/polypyrrole (CuHCNFe/Ppy) hybrid mediator, and the resulting composite electrode was applied to H(2)O(2) detection, achieving a sensitivity of 194 +/- 15 mu A mmol(-1) L. The results showed that the CSCNT/felt matrix significantly increased the sensitivity of CuHCNFe/Ppy-based sensors compared to those prepared on a felt unrecovered by CSCNTs. Our data revealed that the improved sensitivity of the as-prepared CuHCNFe/Ppy-CSCNT/felt composite electrode can be attributed to the electronic interactions taking place among the CuHCNFe nanocrystals, Ppy layer and CSCNTs. In addition, the presence of CSCNTs also seemed to favor the dispersion of CuHCNFe nanocrystals over the Ppy matrix, even though the CSCNTs were buried under the conducting polymer layer. The CSCNT/felt matrix also enabled the preparation of a glucose biosensor whose sensitivity could be tuned as a function of the number of glucose oxidase (GOx) layers deposited through a Layer-by-Layer technique with an sensitivity of 11 +/- 2 mu A mmol(-1) L achieved at 15 poly(diallyldimethylammoniumchloride)/GOx bilayers. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The present paper describes the utilization of nickel hydroxide modified electrodes toward the catalytic oxidation of carbohydrates (glucose, fructose, lactose and sucrose) and their utilization as electrochemical sensor. The modified electrodes were employed as a detector in flow injection analysis for individual carbohydrate detection, and to an ionic column chromatography system for multi-analyte samples aiming a prior separation step. Kinetic studies were performed on a rotating disk electrode (RDE) in order to determine both the heterogeneous rate constant and number of electrons transferred for each carbohydrate. Many advantages were found for the proposed system including fast and easy handling of the electrode modification, low cost procedure, a wide range of linearity (0.5-50 ppm), low detection limits (ppb level) and high sensitivities. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Hydrogen peroxide was determined in oral antiseptic and bleach samples using a flow-injection system with amperometric detection. A glassy carbon electrode modified by electrochemical deposition of ruthenium oxide hexacyanoferrate was used as working electrode and a homemade Ag/AgCl (saturated KCl) electrode and a platinum wire were used as reference and counter electrodes, respectively. The electrocatalytic reduction process allowed the determination of hydrogen peroxide at 0.0 V. A linear relationship between the cathodic peak current and concentration of hydrogen peroxide was obtained in the range 10-5000 mu mol L(-1) with detection and quantification limits of 1.7 (S/N = 3) and 5.9 (S/N = 10) mu mol L(-1), respectively. The repeatability of the method was evaluated using a 500 mu mol L(-1) hydrogen peroxide solution, the value obtained being 1.6% (n = 14). A sampling rate of 112 samples h(-1) was achieved at optimised conditions. The method was employed for the quantification of hydrogen peroxide in two commercial samples and the results were in agreement with those obtained by using a recommended procedure.
Resumo:
Electrodeposition of bismuth on gold microelectrodes for determination of Pb(II) by square wave anodic stripping voltammetry (SWASV) was accomplished by an in situ procedure in alkaline solution. A linear calibration plot for Pb(II) in the concentration range 40 to 6700 nmol L(-1) (r=0.998) was obtained, the detection limit was found to be 12.5 nmol L(-1) (S/N = 3) and the relative standard deviation in Solutions containing 1 mu mol L(-1) Pb(II) was 4% (n = 12). The analytical performance of the proposed sensor wits tested by measuring the Pb(II) concentration in a wine sample. The result Was in good agreement with the one obtained by GFAAS.
Resumo:
The electrocatalytic oxidation of glycine by doped nickel hydroxide modified electrodes and their use as sensors are described. The electrode modification was carried out by a simple electrochemical coprecipitation and its electrochemical properties were investigated. The modified electrode presented activity for glycine oxidation after applying a potential required to form NiOOH (similar to 0.45 V vs Ag/AgCl). In these conditions a sensitivity of 0.92 mu A mmol(-1) L and a linear response range from 0.1 up to 1.2 mmol L(-1) were achieved in the electrolytic Solutions at PH 12.6. Limits of detection and quantification were found to be 30 and 110 mu mol L(-1), respectively. Kinetic studies performed with rotating disk electrode (RDE) and by chronoamperometry allowed to determine the heterogeneous rate constant of 4.3 x 10(2) mol(-1) Ls(-1), Suggesting that NiOOH is a good electrocatalyst for glycine oxidation. NiOOH activity to oxidize other amino acids was also investigated, (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
A sensor for H2O2 amperometric detection based on a Prussian blue (PB) analogue was developed. The electrocatalytic process allows the determination of hydrogen peroxide at 0.0 V with a limit of detection of 1.3 mu mol L-1 in a flow injection analysis (FIA) configuration. Studies on the optimization of the FIA parameters were performed and under optimal FIA operational conditions the linear response of the method was extended up to 500 mu mol L-1 hydrogen peroxide with good stability. The possibility of using the developed sensor in medium containing sodium ions and the increased operational stability constitute advantages in comparison with PB-based amperometric sensors. The usefulness of the methodology was demonstrated by addition-recovery experiments with rainwater samples and values were in the 98.8 to 103% range.
Resumo:
The present paper describes the catalytic oxidation of urea performed by nickel hydroxide and nickel/cobalt hydroxide modified electrodes by using both electrodeposited films and nanoparticles. The incorporation of Co foreign atoms leads to a slight increase in sensitivity besides the shift in redox process, avoiding the oxygen reaction. Nanostructured Ni80Co20(OH)(2) was synthesized by sonochemical route producing 5 nm diameter particles characterized by high-resolution transmission electron microscopy (HRTEM) being immobilized onto electrode by using the electrostatic Layer-by-layer technique, yielding attractive modified electrodes for sensor development. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Pyrolytic graphite electrodes (PGE) were modified into dopamine solutions using phosphate buffer solutions, pH 10 and 6.5, as supporting electrolyte. The modification process involved a previous anodization of the working electrode at +1. 5 V into 0. 1 mol-L-1 NaOH followed by other anodization step, in the same experimental conditions, into dopamine (DA) solutions. pH of the supporting electrolyte performed an important role in the production of a superficial melanin polymeric film, which permitted the simultaneous detection of ascorbic acid (AA), (DA) and uric acid (UA), Delta EAA-DA = 222 mV-, Delta EAA-UA = 360 mV and Delta EDA-UA=138mV, avoiding the superficial poisoning effects. The calculated detection limits were: 1.4 x 10(-6) mol L-1 for uric acid, 1.3x10-(5) molL(-1) for ascorbic acid and 1.1 X 10(-7) mol L-1 for dopamine, with sensitivities of (7.7 +/- 0.5), (0.061 +/- 0.001) and (9.5 +/- 0.05)A mol(-1) cm(-2), respectively, with no mutual interference. Uric acid was determined in urine, blood and serum human samples after dilution in phosphate buffer and no additional sample pre-treatment was necessary. The concentration of uric acid in urine was higher than the values found in blood and serum and the recovery tests (92-102%) indicated that no matrix effects were observed. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The performance of a carbon paste electrode (CPE) modified with SBA-15 nanostructured silica organofunctionalised with 2-benzothiazolethiol in the simultaneous determination of Pb(II), Cu(II) and Hg(II) ions in natural water and sugar cane spirit (cachaca) is described. Pb(II), Cu(II) and Hg(II) were pre-concentrated on the surface of the modified electrode by complexing with 2-benzothiazolethiol and reduced at a negative potential (-0.80 V). Then the reduced products were oxidised by DPASV procedure. The fact that three stripping peaks appeared on the voltammograms at the potentials of -0.48 V (Pb2+), -0.03 V (Cu2+) and +0.36 V (Hg2+) in relation to the SCE, demonstrates the possibility of simultaneous determination of Pb2+, Cu2+ and Hg2+. The best results were obtained under the following optimised conditions: 100 mV pulse amplitude, 3 min accumulation time, 25 mV s(-1) scan rate in phosphate solution pH 3.0. Using such parameters, calibration graphs were linear in the concentration ranges of 3.00-70.0 x 10(-7) mol L-1 (Pb2+), 8.00-100.0 X 10(-7) mol L-1 (Cu2+) and 2.00-10.0 x 10(-6) mol L-1 (Hg2+). Detection limits of 4.0 x 10(-8) mol L-1 (Pb2+), 2.0 x 10(-7) mol L-1 (Cu2+) and 4.0 x 10(-7) mol L-1 (Hg2+) were obtained at the signal noise ratio (SNR) of 3. The results indicate that this electrode is sensitive and effective for simultaneous determination of Pb2+, Cu2+ and Hg2+ in the analysed samples. (C) 2008 Published by Elsevier B.V.
Resumo:
The anodic oxidation of ascorbic acid on a ruthenium oxide hexacyanoferrate modified electrode was characterized by cyclic voltammetry. On this modified surface, the electrocatalytic process allows the determination of ascorbic acid to be performed at 0.0 V and pH 6.9 with a limit of detection of 2.2 mu M in a flow injection configuration. Under this experimental condition, no interference from glucose, nitrite and uric acid was noticed. Lower detection limit values were obtained by measuring flow injection analysis (FIA) responses at 0.4 V (0.14 mu M), but a concurrent loss of selectivity is expected at this more positive potential. Under optimal FIA operating conditions, the linear response of the method was extended up to 1 mM ascorbic acid. The repeatability of the method for injections of a 1.0 mM ascorbic acid solution was 2.0% (n=10). The usefulness of the method was demonstrated by an addition-recovery experiment with urine samples and the recovered values were in the 98-104% range. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
This work presents a cyclic voltammetry study of the polyaniline/polyluminol copolymer on platinum electrodes. The results show that under determined conditions it is possible to obtain the copolymer deposited on a metallic surface. The luminol presence clearly affects the oxidation of aniline in the nucleation process and, additionally, changes the cyclic voltammetric characteristics of the obtained material. In this aspect, the copolymer presents hybrid characteristics when compared to the polyaniline and polyluminol separately obtained and seems to present intermediary conductivity.