23 resultados para diarrheagenic Escherichia coli
Resumo:
The pst operon of Escherichia coli is composed of five genes that encode a high-affinity phosphate transport system. pst belongs to the PHO regulon, which is a group of genes and operons that are induced in response to phosphate limitation. The pst operon also has a regulatory role in the repression of PHO genes` transcription under phosphate excess conditions. Transcription of pst is initiated at the promoter located upstream to the first gene, pstS. Immediately after its synthesis, the primary transcript of pst is cleaved into shorter mRNA molecules in a ribonuclease E-dependent manner. Other ribonucleases, such as RNase III and MazF, do not play a role in pst mRNA processing. RNase E is thus at least partially responsible for processing the pst primary transcript.
Resumo:
The 157-kb conjugative plasmid pEO5 encoding alpha-haemolysin in strains of human enteropathogenic Escherichia coli (EPEC) O26 was investigated for its relationship with EHEC-haemolysin-encoding plasmids of enterohaemorrhagic E. coli (EHEC) O26 and O157 strains. Plasmid pEO5 was found to be compatible with EHEC-virulence plasmids and did not hybridize in Southern blots with plasmid pO157 from the EHEC O157:H7 strain EDL933, indicating that both plasmids were unrelated. A 9227-bp stretch of pEO5 DNA encompassing the entire alpha-hlyCABD operon was sequenced and compared for similarity to plasmid and chromosomally inherited alpha-hly determinants. The alpha-hly determinant of pEO5 (7252 bp) and its upstream region was most similar to corresponding sequences of the murine E. coli alpha-hly plasmid pHly152, in particular, the structural alpha-hlyCABD genes (99.2% identity) and the regulatory hlyR regions (98.8% identity). pEO5 and alpha-hly plasmids of EPEC O26 strains from humans and cattle were very similar for the regions encompassing the structural alpha-hlyCABD genes. The major difference found between the hly regions of pHly152 and pEO5 is caused by the insertion of an IS2 element upstream of the hlyC gene in pHly152. The presence of transposon-like structures at both ends of the alpha-hly sequence indicates that this pEO5 virulence factor was probably acquired by horizontal gene transfer.
Resumo:
The pst operon of Escherichia coli is composed of five genes that encode a high-affinity phosphate transport system. As a member of the PHO regulon, pst transcription is activated under phosphate shortage conditions. Under phosphate-replete conditions, the pst operon also functions as a negative regulator of the PHO genes. Transcription of pst is initiated at the promoter located upstream to the first gene, pstS. Immediately after its synthesis, the primary transcript of pst is cleaved into shorter mRNA molecules. The transcription unit corresponding to pstS is significantly more abundant than the transcripts of the other pst genes due to stabilisation of pstS mRNA by a repetitive extragenic palindrome (REP) structure downstream to the pstS locus. The presence of the REP sequence also results in an increased level of PstS proteins. However, the surplus level of PstS proteins produced in the presence of REP does not contribute to the repressive role of Pst in PHO expression.
Resumo:
Heat-labile toxins (LT) encompass at least 16 natural polymorphic toxin variants expressed by wild-type enterotoxigenic Escherichia coli (ETEC) strains isolated from human beings, but only one specific form, produced by the reference ETEC H10407 strain (LT1), has been intensively studied either as a virulence-associated factor or as a mucosal/transcutaneous adjuvant. In the present study, we carried out a biological/immunological characterization of a natural LT variant (LT2) with four polymorphic sites at the A subunit (S190L, G196D, K213E, and S224T) and one at the B subunit (T75A). The results indicated that purified LT2, in comparison with LT1, displayed similar in vitro toxic activities (adenosine 3`,5`-cyclic monophosphate accumulation) on mammalian cells and in vivo immunogenicity following delivery via the oral route. Nonetheless, the LT2 variant showed increased adjuvant action to ovalbumin when delivered to mice via the transcutaneous route while antibodies raised in mice immunized with LT2 displayed enhanced affinity and neutralization activity to LT1 and LT2. Taken together, the results indicate that the two most frequent LT polymorphic forms expressed by wild ETEC strains share similar biological features, but differ with regard to their immunological properties.
Resumo:
The pst operon of Escherichia coli is composed of five genes pstS, pstC, pstA, pstB and phoU, that encode a high-affinity phosphate transport system and a negative regulator of the PHO regulon. Transcription of pst is induced under phosphate shortage and is initiated at the promoter located upstream of the first gene of the operon, pstS. Here, we show by four different technical approaches the existence of additional internal promoters upstream of pstC, pstB and phoU. These promoters are not induced by Pi-limitation and do not possess PHO-box sequences. Plasmids carrying the pst internal genes partially complement chromosomal mutations in their corresponding genes, indicating that they are translated into functional proteins.
Resumo:
Phosphofructokinase-1 and -2 (Pfk-1 and Pfk-2, respectively) from Escherichia coli belong to different homologous superfamilies. However, in spite of the lack of a common ancestor, they share the ability to catalyze the same reaction and are inhibited by the substrate MgATP. Pfk-2, an ATP-dependent 6-phosphofructokinase member of the ribokinase-like superfamily, is a homodimer of 66 kDa subunits whose oligomerization state is necessary for catalysis and stability. The presence of MgATP favors the tetrameric form of the enzyme. In this work, we describe the structure of Pfk-2 in its inhibited tetrameric form, with each subunit bound to two ATP molecules and two Mg ions. The present structure indicates that substrate inhibition occurs due to the sequential binding of two MgATP molecules per subunit, the first at the usual site occupied by the nucleotide in homologous enzymes and the second at the allosteric site, making a number of direct and Mg-mediated interactions with the first. Two configurations are observed for the second MgATP, one of which involves interactions with Tyr23 from the adjacent subunit in the dimer and the other making an unusual non-Watson-Crick base pairing with the adenine in the substrate ATP. The oligomeric state observed in the crystal is tetrameric, and some of the structural elements involved in the binding of the Substrate and allosteric ATPs are also participating in the dimer-dimer interface. This structure also provides the grounds to compare analogous features of the nonhomologous phosphofructokinases from E. coli. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Substrate inhibition by ATP is a regulatory feature of the phosphofructokinases isoenzymes from Escherichia coli (Pfk-1 and Pfk-2). Under gluconeogenic conditions, the loss of this regulation in Pfk-2 causes substrate cycling of fructose-6-phosphate (fructose-6-P) and futile consumption of ATP delaying growth. In the present work, we have broached the mechanism of ATP-induced inhibition of Pfk-2 from both structural and kinetic perspectives. The crystal structure of Pfk-2 in complex with fructose-6-P is reported to a resolution of 2 angstrom. The comparison of this structure with the previously reported inhibited form of the enzyme suggests a negative interplay between fructose-6-P binding and allosteric binding of MgATP. Initial velocity experiments show a linear increase of the apparent K(0.5) for fructose-6-P and a decrease in the apparent k(cat) as a function of MgATP concentration. These effects occur simultaneously with the induction of a sigmoidal kinetic behavior (n(H) of approximately 2). Differences and resemblances in the patterns of fructose-6-P binding and the mechanism of inhibition are discussed for Pfk-1 and Pfk-2, as an example of evolutionary convergence, because these enzymes do not share a common ancestor.
Resumo:
Neutral trehalase from Neurospora crassa was expressed in Escherichia coli as a polypeptide of similar to 84 kDa in agreement with the theoretical size calculated from the corresponding cDNA. The recombinant neutral trehalase, purified by affinity chromatography exhibited a specific activity of 80-150 mU/mg protein. Optima of pH and temperature were 7.0 and 30 degrees C, respectively. The enzyme was absolutely specific for trehalose, and was quite sensitive to incubation at 40 degrees C. The recombinant enzyme was totally dependent on calcium, and was inhibited by ATP, copper, silver, aluminium and cobalt. K(M) was 42 mM, and V(max) was 30.6 nmol of glucose/min. The recombinant protein was phosphorylated by cAMP-dependent protein kinase, but not significantly activated. Immunoblotting with polyclonal antiserum prepared against the recombinant protein showed that neutral trehalase protein levels increased during exponential phase of N. crassa growth and dropped at the stationary phase. This is the first report of a neutral trehalase produced in E. coli with similar biochemical properties described for fungi native neutral trehalases, including calcium-dependence. (C) 2008 Elsevier Inc. All rights reserved.