17 resultados para debt deflation.
Resumo:
Time-lagged responses of biological variables to landscape modifications are widely recognized, but rarely considered in ecological studies. In order to test for the existence of time-lags in the response of trees, small mammals, birds and frogs to changes in fragment area and connectivity, we studied a fragmented and highly dynamic landscape in the Atlantic forest region. We also investigated the biological correlates associated with differential responses among taxonomic groups. Species richness and abundance for four taxonomic groups were measured in 21 secondary forest fragments during the same period (2000-2002), following a standardized protocol. Data analyses were based on power regressions and model selection procedures. The model inputs included present (2000) and past (1962, 1981) fragment areas and connectivity, as well as observed changes in these parameters. Although past landscape structure was particularly relevant for trees, all taxonomic groups (except small mammals) were affected by landscape dynamics, exhibiting a time-lagged response. Furthermore, fragment area was more important for species groups with lower dispersal capacity, while species with higher dispersal ability had stronger responses to connectivity measures. Although these secondary forest fragments still maintain a large fraction of their original biodiversity, the delay in biological response combined with high rates of deforestation and fast forest regeneration imply in a reduction in the average age of the forest. This also indicates that future species losses are likely, especially those that are more strictly-forest dwellers. Conservation actions should be implemented to reduce species extinction, to maintain old-growth forests and to favour the regeneration process. Our results demonstrate that landscape history can strongly affect the present distribution pattern of species in fragmented landscapes, and should be considered in conservation planning. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The stratigraphic subdivision and correlation of dune deposits is difficult, especially when age datings are not available. A better understanding of the controls on texture and composition of eolian sands is necessary to interpret ancient eolian sediments. The Imbituba-Jaguaruna coastal zone (Southern Brazil, 28 degrees-29 degrees S) stands out due to its four well-preserved Late Pleistocene (eolian generation 1) to Holocene eolian units (eolian generations 2, 3, and 4). In this study, we evaluate the grain-size and heavy-mineral characteristics of the Imbituba-Jaguartma eolian units through statistical analysis of hundreds of sediment samples. Grain-size parameters and heavy-mineral content allow us to distinguish the Pleistocene from the Holocene units. The grain size displays a pattern of fining and better sorting from generation 1 (older) to 4 (younger), whereas the content of mechanically stable (dense and hard) heavy minerals decreases from eolian generation 1 to 4. The variation in grain size and heavy-mineral content records shifts in the origin and balance (input versus output) of eolian sediment supply attributable mainly to relative sea-level changes. Dunefields submitted to relative sea-level lowstand conditions (eolian generation 1) are characterized by lower accumulation rates and intense post-depositional dissection by fluvial incision. Low accumulation rates favor deflation in the eolian system, which promotes concentration of denser and stable heavy minerals (increase of ZTR index) as well as coarsening of eolian sands. Dissection involves the selective removal of finer sediments and less dense heavy minerals to the coastal source area. Under a high rate of relative sea-level rise and transgression (eolian generation 2), coastal erosion prevents deflation through high input of sediments to the coastal eolian source. This condition favors dunefield growth. Coastal erosion feeds sand from local sources to the eolian system. including sands from previous dunefields (eolian generation 1) and from drowned incised valleys. Therefore, dunefields corresponding to transgressive phases inherit the grain-size and heavy-mineral characteristics of previous dunefields, leading to selective enrichment of finer sands and lighter minerals. Eolian generations 3 and 4 developed during a regressive-progradational phase (Holocene relative sea level highstand). The high rate of sediment supply during the highstand phase prevents deflation. The lack of coastal erosion favors sediment supply from distal sources (fluvial sediments rich in unstable heavy minerals). Thus, dunefields of transgressive and highstand systems tracts may be distinguished from dunefields of the lowstand systems tract through high rates of accumulation (low deflation) in the former. The sediment source of the transgressive dunefields (high input of previously deposited coastal sands) differs from that of the highstand dunefields (high input of fluvial distal sands). Based on this case study, we propose a general framework for the relation between relative sea level, sediment supply and the texture and mineralogy of eolian sediments deposited in siliciclastic wet coastal zones similar to the Imbituba-Jaguaruna coast (C) 2009 Elsevier B.V. All rights reserved.