114 resultados para complex amplitude pupil filters
Resumo:
Objective: To assess the frequency of the genetic markers HLA-DRB1 and DQB1 in patients with Graves' orbitopathy ( GO) with and without extraocular muscle involvement. Design: The frequencies of class II HLA-DRB1 and DQB1 allele groups were determined for 81 Brazilian patients with GO and 161 normal subjects. The patients were divided into myogenic and nonmyogenic groups based on the clinical characteristics of the orbitopathy and quantitative computed tomography analysis of the extraocular muscle ( EOM) dimensions. Main outcome: Compared to the frequency obtained for samples of normal subjects of the Brazilian population, HLA-DRB1*16 (p(c)= 0.008) was overrepresented in myogenic and HLA-DRB1*03 (p(c)= 0.02) in nonmyogenic patients. Conclusions: The association between the HLA-DRB1* 16 and the myogenic subtype of GO suggests that EOM involvement in GO may be genetically predisposed.
Resumo:
A smooth inflaton potential is generally assumed when calculating the primordial power spectrum, implicitly assuming that a very small oscillation in the inflaton potential creates a negligible change in the predicted halo mass function. We show that this is not true. We find that a small oscillating perturbation in the inflaton potential in the slow-roll regime can alter significantly the predicted number of small halos. A class of models derived from supergravity theories gives rise to inflaton potentials with a large number of steps and many trans-Planckian effects may generate oscillations in the primordial power spectrum. The potentials we study are the simple quadratic (chaotic inflation) potential with superimposed small oscillations for small field values. Without leaving the slow-roll regime, we find that for a wide choice of parameters, the predicted number of halos change appreciably. For the oscillations beginning in the 10(7)-10(8) M(circle dot) range, for example, we find that only a 5% change in the amplitude of the chaotic potential causes a 50% suppression of the number of halos for masses between 10(7)-10(8) M(circle dot) and an increase in the number of halos for masses <10(6) M(circle dot) by factors similar to 15-50. We suggest that this might be a solution to the problem of the lack of observed dwarf galaxies in the range 10(7)-10(8) M(circle dot). This might also be a solution to the reionization problem where a very large number of Population III stars in low mass halos are required.
Resumo:
Context. The star HD 87643, exhibiting the ""B[e] phenomenon"", has one of the most extreme infrared excesses for this object class. It harbours a large amount of both hot and cold dust, and is surrounded by an extended reflection nebula. Aims. One of our major goals was to investigate the presence of a companion in HD87643. In addition, the presence of close dusty material was tested through a combination of multi-wavelength high spatial resolution observations. Methods. We observed HD 87643 with high spatial resolution techniques, using the near-IR AMBER/VLTI interferometer with baselines ranging from 60 m to 130 m and the mid-IR MIDI/VLTI interferometer with baselines ranging from 25 m to 65 m. These observations are complemented by NACO/VLT adaptive-optics-corrected images in the K and L-bands, and ESO-2.2m optical Wide-Field Imager large-scale images in the B, V and R-bands. Results. We report the direct detection of a companion to HD 87643 by means of image synthesis using the AMBER/VLTI instrument. The presence of the companion is confirmed by the MIDI and NACO data, although with a lower confidence. The companion is separated by similar to 34 mas with a roughly north-south orientation. The period must be large (several tens of years) and hence the orbital parameters are not determined yet. Binarity with high eccentricity might be the key to interpreting the extreme characteristics of this system, namely a dusty circumstellar envelope around the primary, a compact dust nebulosity around the binary system and a complex extended nebula suggesting past violent ejections.
Resumo:
Context. The origin of the short-term variability in Be stars remains a matter of controversy. Pulsations and rotational modulation are the components of the favored hypothesis. Aims. We present our analysis of CoRoT data of the B8IIIe star HD 175869 observed during the first short run in the center direction (SRC1). Methods. We review both the instrumental effects visible in the CoRoT light curve and the analysis methods used by the CoRoT Be team. We applied these methods to the CoRoT light curve of the star HD 175869. A search for line-profile variations in the spectroscopic data was also performed. We also searched for a magnetic field, by applying the LSD technique to spectropolarimetric data. Results. The light curve exhibits low-amplitude variations of the order of 300 mu mag with a double wave shape. A frequency within the range determined for the rotational frequency and 6 of its harmonics are detected. The main frequency and its first harmonic exhibit amplitude variations of a few days. Other significant frequencies of low-amplitude from 25 to a few mu mag are also found. The analysis of line profiles from ground-based spectroscopic data does not detect any variation. In addition, no Zeeman signature was found. Conclusions. Inhomogeneities caused by stellar activity in or just above the photosphere are proposed to produce the photometric variability detected by CoRoT in the Be star HD 175869. The hypothesis that non-radial pulsations are the origin of these variations cannot be excluded.
Resumo:
We report on an intensive observational campaign carried out with HARPS at the 3.6 m telescope at La Silla on the star CoRoT-7. Additional simultaneous photometric measurements carried out with the Euler Swiss telescope have demonstrated that the observed radial velocity variations are dominated by rotational modulation from cool spots on the stellar surface. Several approaches were used to extract the radial velocity signal of the planet(s) from the stellar activity signal. First, a simple pre-whitening procedure was employed to find and subsequently remove periodic signals from the complex frequency structure of the radial velocity data. The dominant frequency in the power spectrum was found at 23 days, which corresponds to the rotation period of CoRoT-7. The 0.8535 day period of CoRoT-7b planetary candidate was detected with an amplitude of 3.3 m s(-1). Most other frequencies, some with amplitudes larger than the CoRoT-7b signal, are most likely associated with activity. A second approach used harmonic decomposition of the rotational period and up to the first three harmonics to filter out the activity signal from radial velocity variations caused by orbiting planets. After correcting the radial velocity data for activity, two periodic signals are detected: the CoRoT-7b transit period and a second one with a period of 3.69 days and an amplitude of 4 m s(-1). This second signal was also found in the pre-whitening analysis. We attribute the second signal to a second, more remote planet CoRoT-7c. The orbital solution of both planets is compatible with circular orbits. The mass of CoRoT-7b is 4.8 +/- 0.8 (M(circle plus)) and that of CoRoT-7c is 8.4 +/- 0.9 (M(circle plus)), assuming both planets are on coplanar orbits. We also investigated the false positive scenario of a blend by a faint stellar binary, and this may be rejected by the stability of the bisector on a nightly scale. According to their masses both planets belong to the super-Earth planet category. The average density of CoRoT-7b is rho = 5.6 +/- 1.3 g cm(-3), similar to the Earth. The CoRoT-7 planetary system provides us with the first insight into the physical nature of short period super-Earth planets recently detected by radial velocity surveys. These planets may be denser than Neptune and therefore likely made of rocks like the Earth, or a mix of water ice and rocks.
Resumo:
Context. Mass-loss occurring in red supergiants (RSGs) is a major contributor to the enrichment of the interstellar medium in dust and molecules. The physical mechanism of this mass loss is however relatively poorly known. Betelgeuse is the nearest RSG, and as such a prime object for high angular resolution observations of its surface (by interferometry) and close circumstellar environment. Aims. The goal of our program is to understand how the material expelled from Betelgeuse is transported from its surface to the interstellar medium, and how it evolves chemically in this process. Methods. We obtained diffraction-limited images of Betelgeuse and a calibrator (Aldebaran) in six filters in the N band (7.76 to 12.81 mu m) and two filters in the Q band (17.65 and 19.50 mu m), using the VLT/VISIR instrument. Results. Our images show a bright, extended and complex circumstellar envelope at all wavelengths. It is particularly prominent longwards of approximate to 9-10 mu m, pointing at the presence of O-rich dust, such as silicates or alumina. A partial circular shell is observed between 0.5 and 1.0 '' from the star, and could correspond to the inner radius of the dust envelope. Several knots and filamentary structures are identified in the nebula. One of the knots, located at a distance of 0.9 '' west of the star, is particularly bright and compact. Conclusions. The circumstellar envelope around Betelgeuse extends at least up to several tens of stellar radii. Its relatively high degree of clumpiness indicates an inhomogeneous spatial distribution of the material lost by the star. Its extension corresponds to an important intermediate scale, where most of the dust is probably formed, between the hot and compact gaseous envelope observed previously in the near infrared and the interstellar medium.
Resumo:
A network can be analyzed at different topological scales, ranging from single nodes to motifs, communities, up to the complete structure. We propose a novel approach which extends from single nodes to the whole network level by considering non-overlapping subgraphs (i.e. connected components) and their interrelationships and distribution through the network. Though such subgraphs can be completely general, our methodology focuses on the cases in which the nodes of these subgraphs share some special feature, such as being critical for the proper operation of the network. The methodology of subgraph characterization involves two main aspects: (i) the generation of histograms of subgraph sizes and distances between subgraphs and (ii) a merging algorithm, developed to assess the relevance of nodes outside subgraphs by progressively merging subgraphs until the whole network is covered. The latter procedure complements the histograms by taking into account the nodes lying between subgraphs, as well as the relevance of these nodes to the overall subgraph interconnectivity. Experiments were carried out using four types of network models and five instances of real-world networks, in order to illustrate how subgraph characterization can help complementing complex network-based studies.
Resumo:
In many real situations, randomness is considered to be uncertainty or even confusion which impedes human beings from making a correct decision. Here we study the combined role of randomness and determinism in particle dynamics for complex network community detection. In the proposed model, particles walk in the network and compete with each other in such a way that each of them tries to possess as many nodes as possible. Moreover, we introduce a rule to adjust the level of randomness of particle walking in the network, and we have found that a portion of randomness can largely improve the community detection rate. Computer simulations show that the model has good community detection performance and at the same time presents low computational complexity. (C) 2008 American Institute of Physics.
Resumo:
This article focuses on the identification of the number of paths with different lengths between pairs of nodes in complex networks and how these paths can be used for characterization of topological properties of theoretical and real-world complex networks. This analysis revealed that the number of paths can provide a better discrimination of network models than traditional network measurements. In addition, the analysis of real-world networks suggests that the long-range connectivity tends to be limited in these networks and may be strongly related to network growth and organization.
Resumo:
This paper studies a nonlinear, discrete-time matrix system arising in the stability analysis of Kalman filters. These systems present an internal coupling between the state components that gives rise to complex dynamic behavior. The problem of partial stability, which requires that a specific component of the state of the system converge exponentially, is studied and solved. The convergent state component is strongly linked with the behavior of Kalman filters, since it can be used to provide bounds for the error covariance matrix under uncertainties in the noise measurements. We exploit the special features of the system-mainly the connections with linear systems-to obtain an algebraic test for partial stability. Finally, motivated by applications in which polynomial divergence of the estimates is acceptable, we study and solve a partial semistability problem.
Resumo:
A great part of the interest in complex networks has been motivated by the presence of structured, frequently nonuniform, connectivity. Because diverse connectivity patterns tend to result in distinct network dynamics, and also because they provide the means to identify and classify several types of complex network, it becomes important to obtain meaningful measurements of the local network topology. In addition to traditional features such as the node degree, clustering coefficient, and shortest path, motifs have been introduced in the literature in order to provide complementary descriptions of the network connectivity. The current work proposes a different type of motif, namely, chains of nodes, that is, sequences of connected nodes with degree 2. These chains have been subdivided into cords, tails, rings, and handles, depending on the type of their extremities (e.g., open or connected). A theoretical analysis of the density of such motifs in random and scale-free networks is described, and an algorithm for identifying these motifs in general networks is presented. The potential of considering chains for network characterization has been illustrated with respect to five categories of real-world networks including 16 cases. Several interesting findings were obtained, including the fact that several chains were observed in real-world networks, especially the world wide web, books, and the power grid. The possibility of chains resulting from incompletely sampled networks is also investigated.
Resumo:
We report cross sections for elastic collisions of low-energy electrons with the CH(2)O-H(2)O complex. We employed the Schwinger multichannel method with pseudopotentials in the static-exchange and in the static-exchange-polarization approximations for energies from 0.1 to 20 eV. We considered four different hydrogen-bonded structures for the complex that were generated by classical Monte Carlo simulations. Our aim is to investigate the effect of the water molecule on the pi* shape resonance of formaldehyde. Previous studies reported a pi* shape resonance for CH(2)O at around 1 eV. The resonance positions of the complexes appear at lower energies in all cases due to the mutual polarization between the two molecules. This indicates that the presence of water may favor dissociation by electron impact and may lead to an important effect on strand breaking in wet DNA by electron impact.
Resumo:
The existence of a special periodic window in the two-dimensional parameter space of an experimental Chua's circuit is reported. One of the main reasons that makes such a window special is that the observation of one implies that other similar periodic windows must exist for other parameter values. However, such a window has never been experimentally observed, since its size in parameter space decreases exponentially with the period of the periodic attractor. This property imposes clear limitations for its experimental detection.
Resumo:
We present the transition amplitude for a particle moving in a space with two times and D space dimensions having an Sp(2, R) local symmetry and an SO(D, 2) rigid symmetry. It was obtained from the BRST-BFV quantization with a unique gauge choice. We show that by constraining the initial and final points of this amplitude to lie on some hypersurface of the D + 2 space the resulting amplitude reproduces well-known systems in lower dimensions. This work provides an alternative way to derive the effects of two-time physics where all the results come from a single transition amplitude.
Resumo:
The Jensen theorem is used to derive inequalities for semiclassical tunneling probabilities for systems involving several degrees of freedom. These Jensen inequalities are used to discuss several aspects of sub-barrier heavy-ion fusion reactions. The inequality hinges on general convexity properties of the tunneling coefficient calculated with the classical action in the classically forbidden region.