17 resultados para catalytic hydrogenation
Resumo:
The hydrogenation of benzene and benzene derivatives was studied using Ru(0) nanoparticles prepared by a very simple method based on the in situ reduction of the commercially available precursor ruthenium dioxide under mild conditions (75 degrees C and hydrogen pressure 4atm) in imidazolium ionic liquids. Total turnovers (TTO) of 2700 mol/mol Ru were obtained for the conversion of benzene to cyclohexane under solventless conditions and TTO of 1200 mol/mol Ru were observed under ionic liquid biphasic conditions. When corrected for exposed ruthenium atoms, TTO values of 7940 (solventless) and 3530 (biphasic) were calculated for benzene hydrogenation. These reaction rates are higher than those observed for Ru nanoparticles prepared from decomposition of an organometallic precursor in similar conditions. The presence of the partially hydrogenated product cyclohexene was also detected at low conversion rates. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The [Ru(3)O(H(3)CCO(2))(6)(py)(2)(L)]PF(6) clusters, where L=methanol or dimethyl sulfoxide, can be activated by peroxide or oxygen donor species, such as tert-butyl hydroperoxide (TBHP) or iodosylbenzene (PhIO), respectively, generating reactive intermediates of the type [Ru(3)(IV,IV,III)=0](+). In this way, they catalyse the oxidation of cyclohexane or cyclohexene by TBHP and PhIO, via oxygen atom transfer, rather than by the alternative oxygen radical mechanism characteristic of this type of complexes. In addition to their ability to perform efficient olefin epoxydation catalysis, these clusters also promote the cleavage of the C-H bond in hydrocarbons, resembling the oxidation catalysis by metal porphyrins. (C) 2008 Elsevier Inc. All rights reserved.