44 resultados para bulgur wheat
Resumo:
An experimental laboratory was designed and assembled at the Botanical Institute of So Paulo, Brazil, in order to research atmosphere-plant interactions through the use of a system of fumigation chambers. A system of three ""closed"" fumigation chambers was designed to be used inside or outside the laboratory. The system was built to be used with a single pollutant or a mix of them. The innovation in this system is to allow chemical reactions inside the chambers that simulate atmospheric chemistry, especially photochemical processes involving high levels of ozone. Assessment of the performance and applicability of the system was based on the response of Nicotiana tabacum Bel W3 exposed to ozone produced alternatively by a generator and inside the chamber by reactions of its precursors. The results showed that the system can be well applied to the study of atmospheric chemistry interactions and the effects on plants.
Resumo:
The Mediterranean flour moth, Anagasta kuehniella, is one of the most important insect pests of grains, reported worldwide, feeding on stored grains and products of rice, rye, corn and wheat. Plants synthesize a variety of molecules, including trypsin inhibitors, to defend themselves against attack by insects. In this study, a trypsin inhibitor (PFTI) was purified from Plathymenia foliolosa (Benth.) seeds and was tested for insect growth regulatory effect. The survival and mass of A. kuehniella larvae feeding on control seeds were about 82.7% and 5 ring, respectively, whereas survival on seeds containing 0.7% PFTI was about 56%, while a 66.1% reduction in the average mass of the larvae was observed. The results from dietary utilization experiments with A. kuehniella larvae showed a reduction in efficiency of conversion of ingested food and digested food, and an increase in approximate digestibility and metabolic cost. The level of trypsin was significantly decreased in larval midgut and increased in the feces of larvae reared on a diet containing 0.7% PFTI. Results indicate that PFTI possesses a toxic effect against A. kuehniella larvae. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
A novel trypsin inhibitor (PFTI) was isolated from Plathymenia foliolosa (Benth.) seeds by gel filtration chromatography on a Sephadex G-100, DEAE-Sepharose, and trypsin-Sepharose columns. By SDS-PAGE, PFTI yielded a single band with a M(r) of 19 kDa. PFTI inhibited bovine trypsin and bovine chymotrypsin with equilibrium dissociation constants (K(i)) of 4 x 10(-8) and 1.4 x 10(-6) M, respectively. PFTI retained more than 50% of activity at up to 50 degrees C for 30 min, but there were 80 and 100% losses of activity at 60 and 70 degrees C, respectively. DTT affected the activity or stability of PFTI. The N-terminal amino acid sequence of PFTI showed a high degree of homology with various members of the Kunitz family of inhibitors. Anagasta kuehniella is found worldwide; this insect attacks stored grains and products of rice, oat, rye, corn, and wheat. The velvet bean caterpillar (Anticarsia gemmatalis) is considered the main defoliator pest of soybean in Brazil. Diatraea saccharalis, the sugar cane borer, is the major pest of sugar cane crops, and its caterpillar-feeding behavior, inside the stems, hampers control. PFTI showed significant inhibitory activity against trypsin-like proteases present in the larval midguts on A. kuehniella and D. saccharalis and could suppress the growth of larvae.
Resumo:
Hydrological models featuring root water uptake usually do not include compensation mechanisms such that reductions in uptake from dry layers are compensated by an increase in uptake from wetter layers. We developed a physically based root water uptake model with an implicit compensation mechanism. Based on an expression for the matric flux potential (M) as a function of the distance to the root, and assuming a depth-independent value of M at the root surface, uptake per layer is shown to be a function of layer bulk M, root surface M, and a weighting factor that depends on root length density and root radius. Actual transpiration can be calculated from the sum of layer uptake rates. The proposed reduction function (PRF) was built into the SWAP model, and predictions were compared to those made with the Feddes reduction function (FRF). Simulation results were tested against data from Canada (continuous spring wheat [(Triticum aestivum L.]) and Germany (spring wheat, winter barley [Hordeum vulgare L.], sugarbeet [Beta vulgaris L.], winter wheat rotation). For the Canadian data, the root mean square error of prediction (RMSEP) for water content in the upper soil layers was very similar for FRF and PRF; for the deeper layers, RMSEP was smaller for PRF. For the German data, RMSEP was lower for PRF in the upper layers and was similar for both models in the deeper layers. In conclusion, but dependent on the properties of the data sets available for testing,the incorporation of the new reduction function into SWAP was successful, providing new capabilities for simulating compensated root water uptake without increasing the number of input parameters or degrading model performance.
Resumo:
This article considers alternative methods to calculate the fair premium rate of crop insurance contracts based on county yields. The premium rate was calculated using parametric and nonparametric approaches to estimate the conditional agricultural yield density. These methods were applied to a data set of county yield provided by the Statistical and Geography Brazilian Institute (IBGE), for the period of 1990 through 2002, for soybean, corn and wheat, in the State of Paran. In this article, we propose methodological alternatives to pricing crop insurance contracts resulting in more accurate premium rates in a situation of limited data.
Resumo:
Guignardia citricarpa, the causal agent of citrus black spot, forms airborne ascospores on decomposing citrus leaves and water-spread conidia on fruits, leaves and twigs. The spatial pattern of diseased fruit in citrus tree canopies was used to assess the importance of ascospores and conidia in citrus black spot epidemics in Sao Paulo State, Brazil. The aggregation of diseased fruit in the citrus tree canopy was quantified by the binomial dispersion index (D) and the binary form of Taylor`s Power Law for 303 trees in six groves. D was significantly greater than 1 in 251 trees. The intercept of the regression line of Taylor`s Power Law was significantly greater than 0 and the slope was not different from 1, implying that diseased fruit was aggregated in the canopy independent of disease incidence. Disease incidence (p) and severity (S) were assessed in 2875 citrus trees. The incidence-severity relationship was described (R-2 = 88.7%) by the model ln(S) = ln(a) + bCLL(p) where CLL = complementary log-log transformation. The high severity at low incidence observed in many cases is also indicative of low distance spread of G. citricarpa spores. For the same level of disease incidence, some trees had most of the diseased fruit with many lesions and high disease severity, whereas other trees had most of the fruit with few lesions and low disease severity. Aggregation of diseased fruit in the trees suggests that splash-dispersed conidia have an important role in increasing the disease in citrus trees in Brazil.
Resumo:
Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP)[02/01167-1]
Resumo:
Water use and crop coefficient for hybrid DKB 390. This work aims to characterize the water use of maize hybrid DKB 390 under suitable conditions of irrigation for both sufficient and below-optimal situations of nitrogen supply. Crop coefficient values for different stages are also presented as a result, in order to provide the basis for crop water budget and management throughout the cycle. A field experiment was carried Out during the main season, in which biomass, soil moisture, leaf area, climate data and light transmittance were evaluated. These have allowed deriving water balance, use and efficiency. The mentioned genotype requires around 600 nun for high yield targets, being less efficient when led under below-optimal nitrogen fertilization.
Resumo:
The export of nitrogen (N) from senescent plant parts is important for the efficient use of this macronutrient. The objective of this study was to establish correlations among the photosynthetic pigment content, total N, and the photosynthetic variables with the SPAD-502 readings in Coffea arabica leaves. Correlations were established among the chlorophyll content, N content, and chlorophyll a and b with SPAD-502 readings taken on coffee leaves at different months. The results show that all variables decreased with time. However, correlation increased linearly with N doses. Total chlorophyll presented a direct linear correlation with readings of the portable chlorophyll meter. The SPAD readings have shown to be a good tool to diagnose the integrity of the photosynthetic system in coffee leaves. Thus, the portable chlorophyll SPAD-502 instrument can be used to evaluate the N status and can also help to evaluate the photosynthetic process in coffee plants.
Resumo:
The functional relation between the decline in the rate of a physiological process and the magnitude of a stress related to soil physical conditions is an important tool for uses as diverse as assessment of the stress-related sensitivity of different plant cultivars and characterization of soil structure. Two of the most pervasive sources of stress are soil resistance to root penetration (SR) and matric potential (psi). However, the assessment of these sources of stress on physiological processes in different soils can be complicated by other sources of stress and by the strong relation between SR and psi in a soil. A multivariate boundary line approach was assessed as a means of reducing these cornplications. The effects of SR and psi stress conditions on plant responses were examined under growth chamber conditions. Maize plants (Zea mays L.) were grown in soils at different water contents and having different structures arising from variation in texture, organic carbon content and soil compaction. Measurements of carbon exchange (CE), leaf transpiration (ILT), plant transpiration (PT), leaf area (LA), leaf + shoot dry weight (LSDW), root total length (RTL), root surface area (RSA) and root dry weight (RDW) were determined after plants reached the 12-leaf stage. The LT, PT and LA were described as a function of SR and psi with a double S-shaped function using the multivariate boundary line approach. The CE and LSDW were described by the combination of an S-shaped function for SR and a linear function for psi. The root parameters were described by a single S-shaped function for SR. The sensitivity to SR and psi depended on the plant parameter. Values of PT, LA and LSDW were most sensitive to SR. Among those parameters exhibiting a significant response to psi, PT was most sensitive. The boundary line approach was found to be a useful tool to describe the functional relation between the decline in the rate of a physiological process and the magnitude of a stress related to soil physical conditions. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
No-till (NT) system with crop rotation is one of the most effective strategies to improve agricultural sustainability in tropical and subtropical regions. To control soil acidity in NT, lime is broadcast on the surface without incorporation. The increase in soil pH due to surface liming may decrease zinc (Zn) availability and its uptake by crops. A field experiment was performed in Parana State, Brazil, on a loamy, kaolinitic, thermic Typic Hapludox to evaluate Zn bioavailability in a NT system after surface liming and re-liming. Dolomitic lime was surface applied on the main plots in July 1993 at the rates of 0, 2, 4, and 6 Mg ha-1. In June 2000, the main plots were divided in two subplots to study of the effect of surface re-liming at the rates of 0 and 3 Mg ha-1. The cropping sequence was soybean [Glycine max (L.) Merrill] (2001-2 and 2002-3), wheat (Triticum aestivum L.) (2003), soybean (2003-4), corn (Zea mays L.) (2004-5), and soybean (2005-6). Soil samples were collected at the following depths: 0-0.05, 0.05-0.10, and 0.10-0.20m, 10 years after surface liming and 3 years after surface re-liming. Soil Zn levels were extracted by four extractants: (i) 0.005molL-1 diethylenetriaminepentaacetic acid (DTPA) + 0.1molL-1 triethanolamine (TEA) + 0.01molL-1 calcium chloride (CaCl2) solution at pH7.3 (DTPA-TEA), (ii) 0.1molL-1 hydrochloric acid (HCl) solution, (iii) Mehlich 1 solution, and (iv) Mehlich 3 solution. Zinc concentrations in leaves and grains of soybean, wheat, and corn were also determined. Soil pH (0.01molL-1 CaCl2 suspension) varied from 4.4 to 6.1, at the 0- to 0.05-m depth, from 4.2 to 5.3 at the 0.05- to 0.10-m depth, and from 4.2 to 4.8 at the 0.10- to 0.20-m depth, after liming and re-liming. Zinc concentrations evaluated by DTPA-TEA, 0.1molL-1 HCl, Mehlich 1, and Mehlich 3 solutions were not changed as a result of lime rate application. Re-liming increased Zn concentrations extracted by 0.1molL-1 HCl at 0-0.05m deep and by DTPA-TEA at 0.05-0.10m deep. Surface-applied lime promoted a decrease in Zn concentrations of the crops, mainly in grains, because of increased soil pH at the surface layers. Regardless of the liming treatments, levels of Zn were sufficient to soybean, wheat, and corn nutrition under NT.
Resumo:
There is concern that the use of lower quality phosphate rock can result in elevated amounts of Fe-Al-P water-insoluble compounds in fertilizers and, consequently, low agronomic effectiveness. Therefore, studies were conducted to evaluate the effect of some of these compounds on plant growth. Four commercial superphosphates varying in chemical composition (two single and two triple superphosphates) were selected for the study. Fertilizer impurities were collected as water-insoluble residues by washing each P source with deionized water. A modal analysis, based primarily on elemental chemical analysis and x-ray diffractometry, was used to estimate the chemical composition of each P source. Water-soluble monocalcium phosphate (MCP) and the water-leached fertilizer residues were prepared to give a range of fertilizers in terms of water-soluble phosphorus (WSP) (0-100% of the available P as MCP). The water-leached fractions, MCP, and the mixtures of MCP with water-leached fractions were applied to supply 40 mg available P kg(1) to a thermic Rhodic Kanhapludult with pH values of 5.2 +/- 0.05 (unlimed) and 6.4 +/- 0.08 (limed). Wheat (Triticum aestivum L.) grown in a greenhouse for 101 d served as the test crop. The requirement for WSP was source and pH dependent. At a soil pH of 5.2, the fertilizers required 73 to 95% WSP to reach the maximum dry-matter yield, while they required 60 to 86% WSP at pH 6.4. To reach 90% of the maximum yield, all superphosphate fertilizers required <50% WSP. These results show that it is not always necessary to have high water solubility as required by legislation in many countries.
Resumo:
The effects of drying and rewetting (DRW) have been studied extensively in non-saline soils, but little is known about the impact of DRW in saline soils. An incubation experiment was conducted to determine the impact of 1-3 drying and re-wetting events on soil microbial activity and community composition at different levels of electrical conductivity in the saturated soil extract (ECe) (ECe 0.7, 9.3, 17.6 dS m(-1)). A non-saline sandy loam was amended with NaCl to achieve the three EC levels 21 days prior to the first DRW; wheat straw was added 7 days prior to the first DRW. Each DRW event consisted of 1 week drying and 1 week moist (50% of water holding capacity, WHC). After the last DRW, the soils were maintained moist until the end of the incubation period (63 days after addition of the wheat straw). A control was kept moist (50% of WHC) throughout the incubation period. Respiration rates on the day after rewetting were similar after the first and the second DRW, but significantly lower after the third DRW. After the first and second DRW, respiration rates were lower at EC17.6 compared to the lower EC levels, whereas salinity had little effect on respiration rates after the third DRW or at the end of the experiment when respiration rates were low. Compared to the continuously moist treatment, respiration rates were about 50% higher on day 15 (d15) and d29. On d44, respiration rates were about 50% higher at EC9.7 than at the other two EC levels. Cumulative respiration was increased by DRW only in the treatment with one DRW and only at the two lower EC levels. Salinity affected microbial biomass and community composition in the moist soils but not in the DRW treatments. At all EC levels and all sampling dates, the community composition in the continuously moist treatment differed from that in the DRW treatments, but there were no differences among the DRW treatments. Microbes in moderately saline soils may be able to utilise substrates released after multiple DRW events better than microbes in non-saline soil. However, at high EC (EC17.6), the low osmotic potential reduced microbial activity to such an extent that the microbes were not able to utilise substrate released after rewetting of dry soil.
Resumo:
The effects of combined nitrogen and sulphur fertilisation on the dynamics of leaf and tiller appearance in Marandu palisadegrass (Brachiaria brizantha cv. Marandu) and its impact on dry matter production were evaluated in a greenhouse study. Grass seedlings were grown in pots filled with a soil classified as an Entisol and were harvested after 43 days, a further 35 days and finally after 48 more days. Five rates of N (0, 100, 200, 300 and 400 mg/dm(3)) and 5 rates of S (0, 10, 20, 30 and 40 mg/dm(3)) were tested in an incomplete factorial design with 4 replications. Leaf and tiller development were monitored every 3 days by counting the appearance of recently expanded leaves and new basal tillers. The phyllochron and thermal time between appearance of tillers decreased as N and S fertiliser levels increased to about 300 and 25 mg/dm(3), respectively, then tended to increase. In contrast, leaf and tiller appearance rates increased with the supply of these nutrients to similar levels, then tended to decline. Leaf and tiller production and dry matter yields were affected by both N and S levels, with the role of S increasing as the growth phases increased.
Resumo:
Urea and ammonium sulfate are principal nitrogen (N) sources for crop production. Two field experiments were conducted during three consecutive years to evaluate influence of urea and ammonium sulfate application on grain yield, soil pH, calcium (Ca) saturation, magnesium (Mg) saturation, base saturation, aluminum (Al) saturation, and acidity (H + Al) saturation in lowland rice production. Grain yield was significantly influenced by urea as well as ammonium sulfate fertilization. Soil pH linearly decreased with the application of N by ammonium sulfate and urea fertilizers. However, the magnitude of the pH decrease was greater by ammonium sulfate than by urea. The Ca and Mg saturations were decreased at the greater N rates compared to low rates of N by both the fertilizer sources. The Al and acidity saturation increased with increasing N rates by both the fertilizer sources. However, these acidity indices were increased more with the application of ammonium sulfate compared with urea. Rice grain yield had negative associations with pH, Ca saturation, Mg saturation, and base saturation and positive associations with Al and acidity saturation. This indicates that rice plant is tolerant to soil acidity.