40 resultados para asset accumulation liquidity constraints
Resumo:
The 30Si silicon isotope stable was used for assessing the accumulation and translocation of Si in rice and bean plants grown in labeled nutritive solution. The isotopic silicon composition in plant materials was determined by mass spectrometry (IRMS) using the method based on SiF4 formation. Considering the total-Si added into nutritive solutions, the quantity absorbed by plants was near to 51% for rice and 15% for bean plants. The accumulated amounts of Si per plant were about 150g in rice and 8.6g in bean. Approximately 70% of the total-Si accumulated was found in leaves. At presented experimental conditions, the results confirmed that once Si is accumulated in the old parts of rice and bean plant tissues it is not redistributed to new parts, even when Si is not supplied to plants from nutritive solution.
Resumo:
This work aimed to study the possible alterations in production, accumulation of the vegetative phytomass and nitrogen efficiency use of the maize crop, in different doses of N applied in the fertilization, by using the technique of isotopic dilution of (15)N. The completely randomized block experimental design was adopted, with 5 treatments and 4 replicates. The following treatments were constituted in the doses in covering: 0, 50, 100, 150 and 200 kg ha(-1) of N, with fertilization of N-urea, respectively. Comparisons among the treatments had been run for crop productivity; nitrogen accumulation for the plant, and use of the nitrogen of the urea-(15)N for the crop. The increase of the dose of N-fertilizer resulted in increase of the dry matter mass, of the dry matter yield crop tax, of the productivity and accumulation of N in the maize plants.
Resumo:
In this article, we discuss school schedules and their implications in the context of chronobiological contemporary knowledge, arguing for the need to reconsider time planning in the school setting. We present anecdotal observations regarding chronobiological challenges imposed by the school system throughout different ages and discuss the effects of these schedules in terms of sleepiness and its deleterious consequences on learning, memory, and attention. Different settings (including urban vs. rural habitats) influence timing, which also depends on self-selected sleep schedules. Finally, we criticize the traditional view of a necessary strict stability of sleep-wake habits.
Resumo:
This paper presents an approach for the active transmission losses allocation between the agents of the system. The approach uses the primal and dual variable information of the Optimal Power Flow in the losses allocation strategy. The allocation coefficients are determined via Lagrange multipliers. The paper emphasizes the necessity to consider the operational constraints and parameters of the systems in the problem solution. An example, for a 3-bus system is presented in details, as well as a comparative test with the main allocation methods. Case studies on the IEEE 14-bus systems are carried out to verify the influence of the constraints and parameters of the system in the losses allocation.
Resumo:
In all-optical networks, management of physical layer restrictions should collaborate in lightpath establishment. Label-Switched Path validation in Generalized MultiProtocol Label Switching on Dense Wavelength Division Multiplexing network requires the treatment of the physical impairment-related parameters along the provisioned route. In this paper we propose, for the first time in our view, the generation of an optical layer database by simulation that specifically characterizes the dynamic FWM impairments for the lightpaths provisioned in a GMPLS/DWDM network.
Resumo:
A new, simple approach for modeling and assessing the operation and response of the multiline voltage-source controller (VSC)-based flexible ac transmission system controllers, namely the generalized interline power-flow controller (GIPFC) and the interline power-flow controller (IPFC), is presented in this paper. The model and the analysis developed are based on the converters` power balance method which makes use of the d-q orthogonal coordinates to thereafter present a direct solution for these controllers through a quadratic equation. The main constraints and limitations that such devices present while controlling the two independent ac systems considered, will also be evaluated. In order to examine and validate the steady-state model initially proposed, a phase-shift VSC-based GIPFC was also built in the Alternate Transients Program program whose results are also included in this paper. Where applicable, a comparative evaluation between the GIPFC and the IPFC is also presented.
Resumo:
Pipeline systems play a key role in the petroleum business. These operational systems provide connection between ports and/or oil fields and refineries (upstream), as well as between these and consumer markets (downstream). The purpose of this work is to propose a novel MINLP formulation based on a continuous time representation for the scheduling of multiproduct pipeline systems that must supply multiple consumer markets. Moreover, it also considers that the pipeline operates intermittently and that the pumping costs depend on the booster stations yield rates, which in turn may generate different flow rates. The proposed continuous time representation is compared with a previously developed discrete time representation [Rejowski, R., Jr., & Pinto, J. M. (2004). Efficient MILP formulations and valid cuts for multiproduct pipeline scheduling. Computers and Chemical Engineering, 28, 1511] in terms of solution quality and computational performance. The influence of the number of time intervals that represents the transfer operation is studied and several configurations for the booster stations are tested. Finally, the proposed formulation is applied to a larger case, in which several booster configurations with different numbers of stages are tested. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Clock signal distribution in telecommunication commercial systems usually adopts a master-slave architecture, with a precise time basis generator as a master and phase-locked loops (PLLs) as slaves. In the majority of the networks, second-order PLLs are adopted due to their simplicity and stability. Nevertheless, in some applications better transient responses are necessary and, consequently, greater order PLLs need to be used, in spite of the possibility of bifurcations and chaotic attractors. Here a master-slave network with third-order PLLs is analyzed and conditions for the stability of the synchronous state are derived, providing design constraints for the node parameters, in order to guarantee stability and reachability of the synchronous state for the whole network. Numerical simulations are carried out in order to confirm the analytical results. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Hormones are likely to be important factors modulating the light-dependent anthocyanin accumulation. Here we analyzed anthocyanin contents in hypocotyls of near isogenic Micro-Tom (MT) tomato lines carrying hormone and phytochrome mutations, as single and double-mutant combinations. In order to recapitulate mutant phenotype, exogenous hormone applications were also performed Anthocyanin accumulation was promoted by exogenous abscisic acid (ABA) and inhibited by gibberellin (GA), in accordance to the reduced anthocyanin contents measured in ABA-deficient (notabills) and GA-constitutive response (procera) mutants. Exogenous cytokinin also enhanced anthocyanin levels in MT hypocotyls. Although auxin-insensitive chageotropica mutant exhibited higher anthocyanin contents, pharmacological approaches employing exogenous auxin and a transport inhibitor did not support a direct role of the hormone in anthocyanin accumulation Analysis of mutants exhibiting increased ethylene production (epwastic) or reduced sensitivity (Never ripe), together with pharmacological data obtained from plants treated with the hormone, indicated a limited role for ethylene in anthocyanin contents. Phytochrome-deficiency (aurea) and hormone double-mutant combinations exhibited phenotypes suggesting additive or synergistic interactions, but not fully espistatic ones, in the control of anthocyanin levels in tomato hypocotyls. Our results indicate that phytochrome-mediated anthocyanin accumulation in tomato hypocotyls is modulated by distinct hormone classes via both shared and independent pathways. (C) 2010 Elsevier Ireland Ltd. All rights reserved
Resumo:
The accumulation of saxitoxins (STXs) in fish from freshwater aquaculture was investigated for the first time in the present study. Cyanotoxins have been monitored in liver and muscle samples of Oreochromis miloticus by chromatographic methods, both before and after the deputation process. The results show that tilapia can accumulate STXs. Our findings suggest that deputation with clean water is an alternative process to eliminate STXs from fish and, therefore, improve the safety of tilapia for consumers. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The representation of sustainability concerns in industrial forests management plans, in relation to environmental, social and economic aspects, involve a great amount of details when analyzing and understanding the interaction among these aspects to reduce possible future impacts. At the tactical and operational planning levels, methods based on generic assumptions usually provide non-realistic solutions, impairing the decision making process. This study is aimed at improving current operational harvesting planning techniques, through the development of a mixed integer goal programming model. This allows the evaluation of different scenarios, subject to environmental and supply constraints, increase of operational capacity, and the spatial consequences of dispatching harvest crews to certain distances over the evaluation period. As a result, a set of performance indicators was selected to evaluate all optimal solutions provided to different possible scenarios and combinations of these scenarios, and to compare these outcomes with the real results observed by the mill in the study case area. Results showed that it is possible to elaborate a linear programming model that adequately represents harvesting limitations, production aspects and environmental and supply constraints. The comparison involving the evaluated scenarios and the real observed results showed the advantage of using more holistic approaches and that it is possible to improve the quality of the planning recommendations using linear programming techniques.
Resumo:
Nowadays, the rising competition for the use of water and environmental resources with consequent restrictions for farmers should change the paradigm in terms of irrigation concepts, or rather, in order to attain economical efficiency other than to supply water requirement for the crop. Therefore, taking into account the social and economical role of bean activity in Brazil, as well as the risk inherent to crop due to its high sensibility to both deficit and excessive water, the optimization methods regarding to irrigation management have become more interesting and essential. This study intends to present a way to determine the optimal water supply, considering different combinations between desired bean yield and level of risk, bringing as a result a graph with the former associated with the latter, depending on different water depths.
Resumo:
Experimental results obtained from a greenhouse trial with common bean (Phaseolus vulgaris L) plants performed to test model hypotheses regarding the onset of limiting hydraulic conditions and the shape of the transpiration reduction curve in the falling rate phase are presented. According to these hypotheses based on simulations with an upscaled single-root model, the matric flux potential at the onset of limiting hydraulic conditions is as a function of root length density and potential transpiration rate, while the relative transpiration in the falling rate phase equals the relative matric flux potential. Transpiration of bean plants in water stressed pots with four different soils was determined daily by weighing and compared to values obtained from non-stressed pots. This procedure allowed determining the onset of the falling rate phase and corresponding soil hydraulic conditions. At the onset of the falling rate phase, the value of matric flux potential M(I) showed to differ in order of magnitude from the model predicted value for three out of four soils. This difference between model and experiment can be explained by the heterogeneity of the root distribution which is not considered by the model. An empirical factor to deal with this heterogeneity should be included in the model to improve predictions. Comparing the predictions of relative transpiration in the falling rate phase using a linear shape with water content, pressure head or matric flux potential, the matric flux potential based reduction function, in agreement with the hypothesis, showed the best performance, while the pressure head based equation resulted in the highest deviations between observed and predicted values of relative transpiration rates. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Silicon (Si) accumulation in organs and cells is one of the most prominent characteristics of plants of the family Poaceae. Many species from this family are used as forage plants for animal feeding. The present study investigates in Brachiaria brizantha (Hochst. ex A. Rich.) Stapf. cv. Marandu: (1) the dry matter production and Si content in shoot due to soil Si fertilizations; (2) the Si distribution among shoot parts; and (3) the silica deposition and localization in leaves. Plants of B. brizantha cv. Marandu were grown under contrasting Si supplies in soil and nutrient solution. Silica deposition and distribution in grass leaf blades were observed using light microscope and scanning electron microscope equipped with an energy dispersive X-ray spectrometer (SEM-EDXS). Silicon concentration in the B. brizantha shoot increased according to the Si supply. Silicon in grass leaves decreased following the order: mature leaf blades > recently expanded leaf blades > non-expanded leaf blades. Silicon accumulates mainly on the upper (adaxial) epidermis of the grass leaf blades and, especially, on the bulliform cells. The Si distribution on adaxial leaf blade surface is non uniform and reflects a silica deposition exclusively on the cell wall of bulliform cells.