45 resultados para anticancer
Resumo:
Ruthenium compounds in general are well suited for medicinal applications. They have been investigated as immunosuppressants, nitric oxide scavengers, antimicrobial agents, and antimalarials. The aim of this study is to evaluate the immunomodulatory activity of cis-(dichloro) tetraammineruthenium(III) chloride (cis-[RuCl(2)(NH(3))(4)]Cl) on human peripheral blood mononuclear cells (PBMC). The cytotoxic studies performed here revealed that the ruthenium( III) complex presents a cytotoxic activity towards normal human PBMC, only at very high concentration. Results also showed that cis-[ RuCl(2)(NH(3))(4)] Cl presents a dual role on PBMC stimulating proliferation and interleukin-2 (IL-2) production at low concentration and inducing cytotoxicity, inability to proliferate, and inhibiting IL-2 production at high concentration. The noncytotoxic activity of cis-[RuCl(2)(NH(3))(4)] Cl at low concentration towards PBMC, which correlates with the small number of annexin V positive cells and also the absence of DNA fragmentation, suggest that this compound does not induce apoptosis on PBMC. For the first time, we show that, at low concentration (10-100 mu g L(-1)), the cis-[ RuCl(2)(NH(3))(4)] Cl compound induces peripheral blood lymphocytes proliferation and also stimulates them to IL-2 production. These results open a new potential applicability of ruthenium(III) complexes as a possible immune regulatory compound acting as immune suppressor at high concentration and as immune stimulator at low concentration.
Resumo:
Lichen phenolic compounds exhibit antioxidant, antimicrobial, antiproliferative. and cytotoxic activities. The purpose of this study was to evaluate the anticancer activity of lecanoric acid, a secondary metabolite of the lichen Parmotrema tinctorum, and its derivatives, orsellinates, obtained by structural modification. A cytotoxicity assay was carried out hi vitro with sulforhodamine B (SRB) using HEp-2 larynx carcinoma, MCF7 breast carcinoma, 786-0 kidney carcinoma, and B16-F10 murine melanoma cell lines, in addition to a normal (Vero) cell line in order to calculate the selectivity index of the compounds. n-Butyl orsellinate was the most active compound, with IC(50) Values (the concentration that inhibits 50% of growth) ranging from 7.2 to 14.0 mu g/ml, against all the cell lines tested. The compound was more active (IC(50), = 11.4 mu g/mL) against B16-F10 cells than was cisplatin (12.5 mu g/mL). Conversely, lecanoric acid and methyl orsellinate were less active against all cell lines, having an IC(50) value higher than 50 mu g/mL. Ethyl orsellinate was more active against HEp-2 than against MCF7, 786-0, or B16-F10 cells. The same pattern was observed for n-propyl and n-butyl orsellinates. n-Pentyl orsellinate was less active than n-propyl or n-butyl orsellinates against HEp-2 cells. The orsellinate activity increased with chain elongation (from methyl to n-butyl), a likely consequence of an increase in lipophilicity. The results revealed that the structural modification of lecanoric acid increases the cytotoxic activity of the derivatives tested.
Resumo:
We have used various computational methodologies including molecular dynamics, density functional theory, virtual screening, ADMET predictions and molecular interaction field studies to design and analyze four novel potential inhibitors of farnesyltransferase (FTase). Evaluation of two proposals regarding their drug potential as well as lead compounds have indicated them as novel promising FTase inhibitors, with theoretically interesting pharmacotherapeutic profiles, when Compared to the very active and most cited FTase inhibitors that have activity data reported, which are launched drugs or compounds in clinical tests. One of our two proposals appears to be a more promising drug candidate and FTase inhibitor, but both derivative molecules indicate potentially very good pharmacotherapeutic profiles in comparison with Tipifarnib and Lonafarnib, two reference pharmaceuticals. Two other proposals have been selected with virtual screening approaches and investigated by LIS, which suggest novel and alternatives scaffolds to design future potential FTase inhibitors. Such compounds can be explored as promising molecules to initiate a research protocol in order to discover novel anticancer drug candidates targeting farnesyltransferase, in the fight against cancer. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
The use of antioxidants during chemotherapy has been shown to reduce or prevent the undesirable effects experienced by healthy cells. Micronutrient selenium is well known for its antioxidant properties; however, selenium exhibits a bimodal nature in that both its beneficial and toxic properties lie within a limited and narrow dose range. The present study investigated the possible protective effects of selenomethionine (SM) on the cytotoxicity, genotoxicity and clastogenicity of the chemotherapic doxorubicin (DXR), a key chemotherapic used in cancer treatment. Human peripheral lymphocytes were treated in vitro with varying concentrations of SM (0.25 mu M, 0.5 mu M, 1.0 mu M and 2.0 mu M), tested in combination with DXR (0.15 mu g/mL). SM alone was not cytotoxic and when combined with DXR treatment, reduced the DNA damage index significantly, the frequency of chromosomal aberrations, the number of aberrant metaphases and the frequency of apoptotic cells. The mechanism of chemoprotection of SM may be related to its antioxidant properties as well as its ability to interfere with DNA repair pathways. Therefore this study showed that SM is effective in reducing the genetic damage induced by the antitumoral agent DXR. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Photodynamic therapy involves administration of a photosensitizing drug and its subsequent activation by visible light of the appropriate wavelength. Several approaches to increasing the specificity of photosensitizers for cancerous tissues and, in particular, through their conjugation to ligands that are directed against tumor-associated antigens have been investigated. Here, we have studied the delivery of the photocytotoxic porphyrin compound TPP(p-O-beta-D-GluOH)(3) into tumor cells that overexpress the glycosphingolipid Gb3, using the Gb3-binding nontoxic B-subunit of Shiga toxin (STxB) as a vector. To allow for site-directed chemical coupling, an STxB variant carrying a free sulfhydryl moiety at its C-terminal end has been used. Binding affinity, cellular uptake, singlet oxygen quantum yield, and phototoxicity of the conjugate have been examined. Despite some effect of coupling on both the photophysical properties of TPP(p-O-beta-D-GluOH)(3) and the affinity of STxB for its receptor, the conjugate exhibited a higher photocytotoxic activity than the photosensitizer alone and was exquisitely selective for Gb3-expressing tumor cells. Furthermore, our data strongly suggest that STxB-mediated retrograde delivery of the photosensitizer to the biosynthetic/secretory pathway is critical for optimal cytotoxic activity. In conclusion, a strong rationale for using retrograde delivery tools such as STxB in combination with photosensitizing agents for the photodynamic therapy of tumors is presented.
Resumo:
Objective: To investigate the possible role of chromatin texture parameters, nuclear morphology, DNA ploidy and clinical functional status in discriminating benign from malignant adrenocortical tumors (ACT). Patients and Methods: Forty-eight cases of clinically benign (n=40) and clinically malignant (n=8) ACT with a minimum of 5-years` follow-up were evaluated for chromatin texture parameters (run length, standard deviation, configurable run length, valley, slope, peak and other 21 Markovian features that describe the distribution of the chromatin in the nucleus), nuclear morphology (nuclear area, nuclear perimeter, nuclear maximum and minumum diameter, nuclear shape), and DNA ploidy. Nuclear parameters were evaluated in Feulgen-stained 5 mu m paraffin-sections analyzed using a CAS 200 image analyzer. Results: Since ACTs present different biological features in children and adults, patients were divided into two groups: children (<= 15 years) and adults (>15 years). In the group of children DNA ploidy presented a marginal significance (p=0.05) in discriminating ACTs. None of the parameters discriminated between malignant and benign ACT in the adult group. Conclusion: ACTs are uncommon and definitive predictive criteria for malignancy remain uncertain, particularly in children. Our data point to DNA content evaluated by image analysis as a new candidate tool for this challenging task. Texture image analysis did not help to differentiate malignant from benign adrenal cortical tumors in children and adults.
Resumo:
Objective. Previously we showed that after intravenous injection a lipidic nanoemulsion concentrates in breast carcinoma tissue and other solid tumors and may carry drugs directed against neoplastic tissues. Use of the nanoemulsion decreases toxicity of the chemotherapeutic agents without decreasing the anticancer action. Currently, the hypothesis was tested whether the nanoemulsion concentrates in breast carcinoma tissue after locoregional injection. Methods. Three different techniques of injection of the nanoemulsion were tested in patients scheduled for surgical treatment: G1 (n=4) into the mammary tissue 5 cm away from the tumor; G2 (n=4) into the peritumoral mammary tissue; G3 (n=6) into the tumoral tissue. The nanoemulsion labeled with radioactive cholesteryl oleate was injected 12 h before surgery; plasma decay of the label was determined from blood samples collected over 24 h and the tissue fragments excised during the surgery were analyzed for radioactivity uptake. Results. Among the three nanoemulsion injection techniques, G3 showed the greatest uptake (data expressed in c.p.m/g of tissue) by the tumor (44,769 +/- 54,749) and by the lymph node (2356 +/- 2966), as well as the greatest concentration in tumor compared to normal tissue (844 +/- 1673). In G1 and G2, uptakes were, respectively, tumor: 60 +/- 71 and 843 +/- 1526; lymph node: 263 +/- 375 and 102 +/- 74; normal tissue: 139 +/- 102 and 217 +/- 413. Conclusions. Therefore, with intralesional injection of the nanoemulsion, a great concentration effect can be achieved. This injection technique may be thus a promising approach for drug-targeting in neoadjuvant chemotherapy in breast cancer treatment. (C) 2008 Published by Elsevier Inc.
Resumo:
Background/Aim: Galectin-3 has been associated with activated Wnt pathway, translocating beta-catenin into the nucleus. However, it is still unknown whether this lectin drives the Wnt signaling activation in lesions from galectin-3-deficient (Gal3(-/-)) mice. The purpose was to study beta-catenin expression in tongue lesions from Gal3(-/-) and wildtype (Gal3(+/+)) mice and the status of Wnt signaling. Materials and Methods: Twenty Gal3(-/-) and Gal3(+/+) male mice were challenged with 4-nitroquinolin-1-oxide and killed at week 16 and 32. Tongues were processed and stained with H&E to detect dysplasias and carcinomas. An imunohistochemical assay was performed to evaluate beta-catenin expression. Results: Carcinomas were more evident in Gal3(+/+) than Gal3(-/-) mice (55.5% vs. 28.5%, respectively; p>0.05). Elevated expression of non-membranous beta-catenin was observed in dysplasias and carcinomas from both groups (p>0.05). Conclusion: Absence of galectin-3 does not interfere in the pattern of beta-catenin expression and therefore in the mediation of the Wnt signaling pathway.
Resumo:
The taxane docetaxel is currently the most effective chemotherapeutic drug for the treatment of advanced breast cancer. However, a considerable proportion of breast cancer patients do not respond positively to docetaxel. The mechanisms of docetaxel resistance are poorly understood. Overexpression of ERBB2 occurs in 15-30% of breast tumors and is associated with chemoresistance to a variety of anticancer drugs. In the present study, we sought to identify genes involved in ERBB2-mediated chemoresistance to docetaxel. We generated SAGE libraries from two human mammary cell lines expressing basal (HB4a) and high (C5.2) levels of ERBB2 before and after intensive exposure to docetaxel and identified potential ERBB2 target genes implicated in a variety of cellular processes including cell proliferation, cell adhesion, apoptosis and cytoskeleton organization. Comparison of the transcriptome of the cell lines before and after docetaxel exposure revealed substantially different expression patterns. Twenty-one differentially expressed genes between HB4a and C5.2 cell lines, before and after docetaxel treatment, were further analyzed by qPCR. The alterations in the expression patterns in HB4a and C5.2 cell lines in response to docetaxel treatment observed by SAGE analysis were confirmed by qPCR for the majority of the genes analyzed. Our study provides a comprehensive view of the expression changes induced in two human mammary cells expressing different levels of ERBB2 in response to docetaxel that could contribute to the elucidation of the mechanisms involved in ERBB2-mediated chemoresistance in breast cancer.
Resumo:
The aim of the present study was to evaluate by immunohistochemistry the prognostic meaning of the tumor marker MET (hepatocyte growth factor) in patients submitted to surgical resection due to primary colorectal adenocarcinoma. Patients and Methods: A retrospective study was carried out that included 286 consecutive patients with colorectal adenocarcinoma, submitted to surgical resection at Barretos Cancer Hospital, from 1993 to 2002. The histopathological expression of the MET tumor marker was evaluated using an anti-protein monoclonal antibody against MET by the streptavidin-biotin-peroxidase technique. The expression of the tumor marker was semi-quantitative, and the slide samples were independently analyzed by three pathologists unaware of patient clinical and histopathological data. Results: The tumor marker expression was positive in 236 (79%) out of a total of 286 patients. This expression was statistically significantly different between stages I and IV (p=0.004), for overall survival (p=0.009), and for cancer-related mortality rates (p=0.022). However, no association between the tumor marker and recurrence (p=0.89) or disease-free interval (p=0.91) was observed. Conclusion: MET has shown significant expression at advanced stages of the disease, as well as for overall survival and cancer-related mortality rates demonstrating to be a valuable marker for poor prognosis in colorectal cancer patients.
Resumo:
Objectives: Selective anticancer cell activity for both cell-penetrating and cationic antimicrobial peptides has previously been reported. As crotamine possesses activities similar to both of these, this study investigates crotamine`s anticancer toxicity in vitro and in vivo. Research design and methods: In vitro cancer cell viability was evaluated after treatment with 1 and 5 mu g/ml of crotamine. In vivo crotamine cytotoxic effects in C57Bl/6J mice bearing B16-F10 primary cutaneous melanoma were tested, with two groups each containing 35 mice. The crotamine-treated group received 1 mu g/day of crotamine per animal, subcutaneously which was well tolerated; the untreated group received a placebo. Results: Crotamine at 5 mu g/ml was lethal to B16-F10, Mia PaCa-2 and SK-Mel-28 cells and inoffensive to normal cells. In vivo crotamine treatment over 21 days significantly delayed tumor implantation, inhibited tumor growth and prolonged the lifespan of the mice. Mice in the crotamine-treated group survived at significantly higher rates (n = 30/35) than those in the untreated group (n = 7/35) (significance calculated with the Kaplan-Meier estimator). The average tumor weight in the untreated group was 4.60 g but was only about 0.27 g in the crotamine-treated mice, if detectable. Conclusions: These data warrant further exploration of crotamine as a tumor inhibition compound.
Resumo:
Background: A growing body of evidence has revealed, the involvement of epigenetic alterations in the etiology of astrocytomas. In the present study, we aimed to evaluate the association of DNA methylation of histone deacetylase genes (HDAC) with the etiology of astrocytoma, and the implications for epigenetic therapy. Materials and Methods: Methylation of the HDAC4, HDAC5 and HDAC6 genes was assessed in 29 tumor samples (astrocytomas grades I, III, and IV) and in the glioblastoma cell lines U87, U251, U343, SF188, and T98G by methylation-specific quantitative PCR (MSED-qPCR). Results: Significantly increased methylation of the HDAC5 gene was observed in astrocytomas when compared to non-neoplastic brain samples (p=0.0007) and to glioblastomas cell lines (p=0.001). A heterogenic methylation pattern was evidenced when compared to the glioblastoma cell lines. Distinct effects on methylation and gene expression were observed after in vitro treatment of the different cell lines with decitabine. Conclusion: Our results suggest that abnormal methylation of HDAC genes is involved in the etiology of astrocytomas and indicate that loci-specific epigenetic interindividualities might be associated to the differential responses to treatment with decitabine.
Resumo:
Background: Human T-lymphotropic virus 1 (HTLV-1) is associated with the T-cell malignancy known as adult T-cell leukemia! lymphoma (ATLL) and with a disorder called HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). Currently, the treatment of these diseases is based on symptom relief. RNA interference (RNAi) technology has been described as an efficient mechanism for development of new therapeutic methods. Thus, the aim of this study was to evaluate the inhibition of HTLV-1 structural proteins using short hairpin RNAs (shRNAs) expressed by non-viral vectors. Materials and Methods: Reporter plasmids that express enhanced green fluorescent protein-Gag (EGFP-Gag) and EGFP-Env fusion proteins and vectors that express shRNAs corresponding to the HTLV-1 gag and env genes were constructed. shRNA vectors and reporter plasmids were simultaneously transfected into HEK 293 cells. Results: Fluorescence microscopy, flow cytometry and real-time PCR showed that shRNAs were effective in inhibiting the fusion proteins. Conclusion: These shRNAs are effective against the expression of structural genes and may provide an approach to the development of new therapeutic agents.
Resumo:
Background/Aims: The expression of cancer/testis antigens (CTAs) on additional normal tissues or stem cells may restrict their use as cancer targets. The objective of the present study was to evaluate the mRNA levels of some CTAs in a variety of tissues. Materials and Methods: mRNA of pericytes, fibroblasts and mesenchymal stem cells (MSCs) derived from adult and fetal tissues, human umbilical vein endothelial cells, MSC-derived adipocytes, selected normal tissues and control cancer cell lines (CLs) were extracted and quantitative polymerase chain reaction was performed for MAGED1, PRAME, CTAG1B, MAGEA3 and MAGEA4. Results: MAGED1 was expressed in all normal tissues and cells evaluated. CTAG1B was expressed at levels comparable to control CLs on MSCs derived from arterial, fetal skin, adipose tissue and saphenous vein, heart, brain and skin tissues. MAGEA4 was detected only in fibroblasts and differentiated adipocytes from MSCs, at levels comparable to the control CLs. Conclusion: The potential use of CTAs in immunotherapy should take into account the potential off-target effects on MSCs.
Resumo:
Glioma is the most frequent and malignant primary human brain tumor with dismal prognosis despite multimodal therapy. Resveratrol and quercetin, two structurally related and naturally occurring polyphenols, are proposed to have anticancer effects. We report here that resveratrol and quercetin decreased the cell number in four glioma cell lines but not in rat astrocytes. Low doses of resveratrol (10 mu M) or quercetin (25 mu M) separately had no effect on apoptosis induction, but had a strong effect on caspase 3/7 activation when administered together. Western blot analyses showed that resveratrol (10 mu M) and quercetin (25 mu M) caused a reduction in phosphorylation of Akt, but this reduction was not sufficient by itself to mediate the effects of these polyphenols. Most important, resveratrol and quercetin chronically administered presented a strong synergism in inducing senescence-like growth arrest. These results suggest that the combination of polyphenols can potentialize their antitumoral activity, thereby reducing the therapeutic concentration needed for glioma treatment. (Cancer Sci 2009; 100: 1655-1662).