146 resultados para anisotropic finite-size scaling
Resumo:
We construct an invisible quantum barrier which represents the phenomenon of quantum reflection using available data on atom-wall and Bose-Einstein-condensate-wall reflection. We use the Abel equation to invert the data. The resulting invisible quantum barrier is double valued in both axes. We study this invisible barrier in the case of atom and Bose-Einstein condensate (BEC) reflection from a solid silicon surface. A time-dependent, one-spatial-dimension Gross-Pitaevskii equation is solved for the BEC case. We found that the BEC behaves very similarly to the single atom except for size effects, which manifest themselves in a maximum in the reflectivity at small distances from the wall. The effect of the atom-atom interaction on the BEC reflection and correspondingly on the invisible barrier is found to be appreciable at low velocities and comparable to the finite-size effect. The trapping of an ultracold atom or BEC between two walls is discussed.
Resumo:
Magnetization and Mossbauer spectroscopy measurements are performed at low temperature under high field, on nanoparticles with a nickel ferrite core and a maghemite shell. These nanoparticles present finite size and surface effects, together with exchange anisotropy. High field magnetization brings the evidences of a monodomain ordered core and surface spins freezing in disorder at low temperature. Mossbauer spectra at 4.2 K present an extra contribution from the disordered surface which is field dependent. Field and size dependences of this latter show a progressive spin alignment along the ferrite core which is size dependent. The weak surface pinning condition of the nanoparticles confirms that the spin disorder is localized in the external shell. The underfield decrease in the mean canting angle in the superficial shell is then directly related to the unidirectional exchange anisotropy through the interface between the ordered core and the disordered shell. The obtained anisotropy field H(Ea) scales as the inverse of the nanoparticle diameter, validating its interfacial origin. The associated anisotropy constant K(Ea) equals 2.5 x 10(-4) J/m(2). (C) 2009 American Institute qf Physics. [doi: 10.1063/1.3245326]
Resumo:
In a U(1)(*)-noncommutative gauge field theory we extend the Seiberg-Witten map to include the (gauge-invariance-violating) external current and formulate-to the first order in the noncommutative parameter-gauge-covariant classical field equations. We find solutions to these equations in the vacuum and in an external magnetic field, when the 4-current is a static electric charge of a finite size a, restricted from below by the elementary length. We impose extra boundary conditions, which we use to rule out all singularities, 1/r included, from the solutions. The static charge proves to be a magnetic dipole, with its magnetic moment being inversely proportional to its size a. The external magnetic field modifies the long-range Coulomb field and some electromagnetic form factors. We also analyze the ambiguity in the Seiberg-Witten map and show that at least to the order studied here it is equivalent to the ambiguity of adding a homogeneous solution to the current-conservation equation.
Resumo:
We calculate the entanglement entropy of blocks of size x embedded in a larger system of size L, by means of a combination of analytical and numerical techniques. The complete entanglement entropy in this case is a sum of three terms. One is a universal x- and L-dependent term, first predicted by Calabrese and Cardy, the second is a nonuniversal term arising from the thermodynamic limit, and the third is a finite size correction. We give an explicit expression for the second, nonuniversal, term for the one-dimensional Hubbard model, and numerically assess the importance of all three contributions by comparing to the entropy obtained from fully numerical diagonalization of the many-body Hamiltonian. We find that finite-size corrections are very small. The universal Calabrese-Cardy term is equally small for small blocks, but becomes larger for x > 1. In all investigated situations, however, the by far dominating contribution is the nonuniversal term stemming from the thermodynamic limit.
Resumo:
The objective of the present work is to propose a numerical and statistical approach, using computational fluid dynamics, for the study of the atmospheric pollutant dispersion. Modifications in the standard k-epsilon turbulence model and additional equations for the calculation of the variance of concentration are introduced to enhance the prediction of the flow field and scalar quantities. The flow field, the mean concentration and the variance of a flow over a two-dimensional triangular hill, with a finite-size point pollutant source, are calculated by a finite volume code and compared with published experimental results. A modified low Reynolds k-epsilon turbulence model was employed in this work, using the constant of the k-epsilon model C(mu)=0.03 to take into account the inactive atmospheric turbulence. The numerical results for the velocity profiles and the position of the reattachment point are in good agreement with the experimental results. The results for the mean and the variance of the concentration are also in good agreement with experimental results from the literature. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The recent claim that the exit probability (EP) of a slightly modified version of the Sznadj model is a continuous function of the initial magnetization is questioned. This result has been obtained analytically and confirmed by Monte Carlo simulations, simultaneously and independently by two different groups (EPL, 82 (2008) 18006; 18007). It stands at odds with an earlier result which yielded a step function for the EP (Europhys. Lett., 70 (2005) 705). The dispute is investigated by proving that the continuous shape of the EP is a direct outcome of a mean-field treatment for the analytical result. As such, it is most likely to be caused by finite-size effects in the simulations. The improbable alternative would be a signature of the irrelevance of fluctuations in this system. Indeed, evidence is provided in support of the stepwise shape as going beyond the mean-field level. These findings yield new insight in the physics of one-dimensional systems with respect to the validity of a true equilibrium state when using solely local update rules. The suitability and the significance to perform numerical simulations in those cases is discussed. To conclude, a great deal of caution is required when applying updates rules to describe any system especially social systems. Copyright (C) EPLA, 2011
Resumo:
We describe the canonical and microcanonical Monte Carlo algorithms for different systems that can be described by spin models. Sites of the lattice, chosen at random, interchange their spin values, provided they are different. The canonical ensemble is generated by performing exchanges according to the Metropolis prescription whereas in the microcanonical ensemble, exchanges are performed as long as the total energy remains constant. A systematic finite size analysis of intensive quantities and a comparison with results obtained from distinct ensembles are performed and the quality of results reveal that the present approach may be an useful tool for the study of phase transitions, specially first-order transitions. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The spectral properties and phase diagram of the exactly integrable spin-1 quantum chain introduced by Alcaraz and Bariev are presented. The model has a U(1) symmetry and its integrability is associated with an unknown R-matrix whose dependence on the spectral parameters is not of a different form. The associated Bethe ansatz equations that fix the eigenspectra are distinct from those associated with other known integrable spin models. The model has a free parameter t(p). We show that at the special point t(p) = 1, the model acquires an extra U(1) symmetry and reduces to the deformed SU(3) Perk-Schultz model at a special value of its anisotropy q = exp(i2 pi/3) and in the presence of an external magnetic field. Our analysis is carried out either by solving the associated Bethe ansatz equations or by direct diagonalization of the quantum Hamiltonian for small lattice sizes. The phase diagram is calculated by exploring the consequences of conformal invariance on the finite-size corrections of the Hamiltonian eigenspectrum. The model exhibits a critical phase ruled by the c = 1 conformal field theory separated from a massive phase by first-order phase transitions.
Resumo:
The existence of conducting islands in polyaniline films has long been proposed in the literature, which would be consistent with conducting mechanisms based on hopping. Obtaining direct evidence of conducting islands, however, is not straightforward. In this paper, conducting islands were visualized in poly(o-ethoxyaniline) (POEA) films prepared at low pH, using Transmission Electron Microscopy (TEM) and atomic force spectroscopy (AFS). The size of the islands varied between 67 and 470 angstrom for a pH=3.0, with a larger average being obtained with AFS, probably due to the finite size effect of the atomic force microscopy tip. In AFS, the conducting islands were denoted by regions with repulsive forces due to the double-layer forces. On the basis of X-ray diffraction (XRD) patterns for POEA in the powder form, we infer that the conducting islands are crystalline, and therefore a POEA film is believed to consist of conducting islands dispersed in an insulating, amorphous matrix. From conductivity measurements we inferred the charge transport to be governed by a typical quasi-one dimensional variable range hopping (VRH) mechanism.
Resumo:
We introduce jump processes in R(k), called density-profile processes, to model biological signaling networks. Our modeling setup describes the macroscopic evolution of a finite-size spin-flip model with k types of spins with arbitrary number of internal states interacting through a non-reversible stochastic dynamics. We are mostly interested on the multi-dimensional empirical-magnetization vector in the thermodynamic limit, and prove that, within arbitrary finite time-intervals, its path converges almost surely to a deterministic trajectory determined by a first-order (non-linear) differential equation with explicit bounds on the distance between the stochastic and deterministic trajectories. As parameters of the spin-flip dynamics change, the associated dynamical system may go through bifurcations, associated to phase transitions in the statistical mechanical setting. We present a simple example of spin-flip stochastic model, associated to a synthetic biology model known as repressilator, which leads to a dynamical system with Hopf and pitchfork bifurcations. Depending on the parameter values, the magnetization random path can either converge to a unique stable fixed point, converge to one of a pair of stable fixed points, or asymptotically evolve close to a deterministic orbit in Rk. We also discuss a simple signaling pathway related to cancer research, called p53 module.
Resumo:
The aim of this study was to evaluate the stress distribution in the cervical region of a sound upper central incisor in two clinical situations, standard and maximum masticatory forces, by means of a 3D model with the highest possible level of fidelity to the anatomic dimensions. Two models with 331,887 linear tetrahedral elements that represent a sound upper central incisor with periodontal ligament, cortical and trabecular bones were loaded at 45º in relation to the tooth's long axis. All structures were considered to be homogeneous and isotropic, with the exception of the enamel (anisotropic). A standard masticatory force (100 N) was simulated on one of the models, while on the other one a maximum masticatory force was simulated (235.9 N). The software used were: PATRAN for pre- and post-processing and Nastran for processing. In the cementoenamel junction area, tensile forces reached 14.7 MPa in the 100 N model, and 40.2 MPa in the 235.9 N model, exceeding the enamel's tensile strength (16.7 MPa). The fact that the stress concentration in the amelodentinal junction exceeded the enamel's tensile strength under simulated conditions of maximum masticatory force suggests the possibility of the occurrence of non-carious cervical lesions such as abfractions.
Resumo:
We consider a nontrivial one-species population dynamics model with finite and infinite carrying capacities. Time-dependent intrinsic and extrinsic growth rates are considered in these models. Through the model per capita growth rate we obtain a heuristic general procedure to generate scaling functions to collapse data into a simple linear behavior even if an extrinsic growth rate is included. With this data collapse, all the models studied become independent from the parameters and initial condition. Analytical solutions are found when time-dependent coefficients are considered. These solutions allow us to perceive nontrivial transitions between species extinction and survival and to calculate the transition's critical exponents. Considering an extrinsic growth rate as a cancer treatment, we show that the relevant quantity depends not only on the intensity of the treatment, but also on when the cancerous cell growth is maximum.
Resumo:
We present measurements of net charge fluctuations in Au+Au collisions at s(NN)=19.6, 62.4, 130, and 200 GeV, Cu+Cu collisions at s(NN)=62.4 and 200 GeV, and p+p collisions at s=200 GeV using the dynamical net charge fluctuations measure nu(+-,dyn). We observe that the dynamical fluctuations are nonzero at all energies and exhibit a modest dependence on beam energy. A weak system size dependence is also observed. We examine the collision centrality dependence of the net charge fluctuations and find that dynamical net charge fluctuations violate 1/N(ch) scaling but display approximate 1/N(part) scaling. We also study the azimuthal and rapidity dependence of the net charge correlation strength and observe strong dependence on the azimuthal angular range and pseudorapidity widths integrated to measure the correlation.
Resumo:
We measure directed flow (v(1)) for charged particles in Au + Au and Cu + Cu collisions at root s(NN) = 200 and 62.4 GeV, as a function of pseudorapidity (eta), transverse momentum (p(t)), and collision centrality, based on data from the STAR experiment. We find that the directed flow depends on the incident energy but, contrary to all available model implementations, not on the size of the colliding system at a given centrality. We extend the validity of the limiting fragmentation concept to v(1) in different collision systems, and investigate possible explanations for the observed sign change in v(1)(p(t)).
Resumo:
Identified charged pion, kaon, and proton spectra are used to explore the system size dependence of bulk freeze-out properties in Cu + Cu collisions at root s(NN) = 200 and 62.4 GeV. The data are studied with hydrodynamically motivated blast-wave and statistical model frameworks in order to characterize the freeze-out properties of the system. The dependence of freeze-out parameters on beam energy and collision centrality is discussed. Using the existing results from Au + Au and pp collisions, the dependence of freeze-out parameters on the system size is also explored. This multidimensional systematic study furthers our understanding of the QCD phase diagram revealing the importance of the initial geometrical overlap of the colliding ions. The analysis of Cu + Cu collisions expands the system size dependence studies from Au + Au data with detailed measurements in the smaller system. The systematic trends of the bulk freeze-out properties of charged particles is studied with respect to the total charged particle multiplicity at midrapidity, exploring the influence of initial state effects.