49 resultados para Water Distribution Networks Leak Detection I
Resumo:
Video adaptation is an extensively explored content providing technique aimed at appropriately suiting several usage scenarios featured by different network requirements and constraints, user`s terminal and preferences. However, its usage in high-demand video distribution systems, such as CNDs, has been badly approached, ignoring several aspects of optimization of network use. To address such deficiencies, this paper presents an approach for implementing the adaptation service by exploring the concept of overlay services networks. As a result of demonstrate the benefits of this proposal, it is made a comparison of this proposed adaptation service with other strategies of video adaptation.
Resumo:
The double-frequency jitter is one of the main problems in clock distribution networks. In previous works, sonic analytical and numerical aspects of this phenomenon were studied and results were obtained for one-way master-slave (OWMS) architectures. Here, an experimental apparatus is implemented, allowing to measure the power of the double-frequency signal and to confirm the theoretical conjectures. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The increased use of marginal quality water with drip irrigation requires sound fertigation practices that reconcile environmental concerns with viable crop production objectives. We conducted experiments to characterize dynamics and patterns of soil solution within wet bulb formed by drip irrigation. Time-domain reflectometry probes were used to monitor the distribution of potassium nitrate (KNO(3)) and water distribution from drippers discharging at constant flow rates of 2, 4 and 8 L h(-1) in soil-filled containers. Considering results from different profiles, we observed greater solute storage near the dripper decreasing gradually towards the wetting front. About half of the applied KNO(3) solution (48%) was stored in the first layer (0-0.10 m) for all experiments, 29% was stored in the next layer (0.10-0.20 m). Comparing different dripper flow rates, we observed higher solution storage for 4 L h(-1), with 45, 53 and 47% of applied KNO(3) solution accumulating in the first layer (0-0.10 m) for dripper flow rates of 2, 4 and 8 L h(-1), respectively. The results suggest that based on the volume and frequency used in this experiment, it would be advantageous to apply small amounts of solution at more frequent intervals to reduce deep percolation losses of applied water and solutes.
Resumo:
P>1. Much of the current understanding of ecological systems is based on theory that does not explicitly take into account individual variation within natural populations. However, individuals may show substantial variation in resource use. This variation in turn may be translated into topological properties of networks that depict interactions among individuals and the food resources they consume (individual-resource networks). 2. Different models derived from optimal diet theory (ODT) predict highly distinct patterns of trophic interactions at the individual level that should translate into distinct network topologies. As a consequence, individual-resource networks can be useful tools in revealing the incidence of different patterns of resource use by individuals and suggesting their mechanistic basis. 3. In the present study, using data from several dietary studies, we assembled individual-resource networks of 10 vertebrate species, previously reported to show interindividual diet variation, and used a network-based approach to investigate their structure. 4. We found significant nestedness, but no modularity, in all empirical networks, indicating that (i) these populations are composed of both opportunistic and selective individuals and (ii) the diets of the latter are ordered as predictable subsets of the diets of the more opportunistic individuals. 5. Nested patterns are a common feature of species networks, and our results extend its generality to trophic interactions at the individual level. This pattern is consistent with a recently proposed ODT model, in which individuals show similar rank preferences but differ in their acceptance rate for alternative resources. Our findings therefore suggest a common mechanism underlying interindividual variation in resource use in disparate taxa.
Resumo:
We consider the two-level network design problem with intermediate facilities. This problem consists of designing a minimum cost network respecting some requirements, usually described in terms of the network topology or in terms of a desired flow of commodities between source and destination vertices. Each selected link must receive one of two types of edge facilities and the connection of different edge facilities requires a costly and capacitated vertex facility. We propose a hybrid decomposition approach which heuristically obtains tentative solutions for the vertex facilities number and location and use these solutions to limit the computational burden of a branch-and-cut algorithm. We test our method on instances of the power system secondary distribution network design problem. The results show that the method is efficient both in terms of solution quality and computational times. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
A novel approach was developed for nitrate analysis in a FIA configuration with amperometric detection (E=-0.48 V). Sensitive and reproducible current measurements were achieved by using a copper electrode activated with a controlled potential protocol. The response of the FIA amperometric method was linear over the range from 0.1 to 2.5 mmol L(-1) nitrate with a detection limit of 4.2 mu mol L(-1) (S/N = 3). The repeatability of measurements was determined as 4.7% (n=9) at the best conditions (flow rate: 3.0 mL min(-1), sample volume: 150 mu L and nitrate concentration: 0.5 mmol L(-1)) with a sampling rate of 60 samples h(-1). The method was employed for the determination of nitrate in mineral water and soft drink samples and the results were in agreement with those obtained by using a recommended procedure. Studies towards a selective monitoring of nitrite were also performed in samples containing nitrate by carrying out measurements at a less negative potential (-0.20 V). (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
A flow system designed with solenoid valves is proposed for determination of weak acid dissociable cyanide, based on the reaction with o-phthalaldehyde (OPA) and glycine yielding a highly fluorescent isoindole derivative. The proposed procedure minimizes the main drawbacks related to the reference batch procedure, based on reaction with barbituric acid and pyridine followed by spectrophotometric detection, i.e., use of toxic reagents, high reagent consumption and waste generation, low sampling rate, and poor sensitivity. Retention of the sample zone was exploited to increase the conversion rate of the analyte with minimized sample dispersion. Linear response (r=0.999) was observed for cyanide concentrations in the range 1-200 mu g L(-1), with a detection limit (99.7% confidence level) of 0.5 mu g L(-1)(19 nmol L(-1)). The sampling rate and coefficient of variation (n=10) were estimated as 22 measurements per hour and 1.4%, respectively. The results of determination of weak acid dissociable cyanide in natural water samples were in agreement with those achieved by the batch reference procedure at the 95% confidence level. Additionally to the improvement in the analytical features in comparison with those of the flow system with continuous reagent addition (sensitivity and sampling rate 90 and 83% higher, respectively), the consumption of OPA was 230-fold lower.
Resumo:
An experiment was implemented to study fluid flow in a pressure media. This procedure successfully combines nuclear magnetic resonance imaging with a pressure membrane chamber in order to visualize the non-wetting and wetting fluid flows with controlled boundary conditions. A specially designed pressure membrane chamber, made of non-magnetic materials and able to withstand 4 MPa, was designed and built for this purpose. These two techniques were applied to the drainage of Douglas fir sapwood. In the study of the longitudinal flow, narrow drainage fingers are formed in the latewood zones. They follow the longitudinal direction of wood and spread throughout the sample length. These fingers then enlarge in the cross-section plane and coalesce until drainage reaches the whole latewood part. At the end of the experiments, when the drainage of liquid water in latewood is completed, just a few sites of percolation appear in earlywood zones. This difference is a result of the wood anatomical structure, where pits, the apertures that allow the sap to flow between wood cells, are more easily aspirated in earlywood than in latewood. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Variables influencing decision-making in real settings, as in the case of voting decisions, are uncontrollable and in many times even unknown to the experimenter. In this case, the experimenter has to study the intention to decide (vote) as close as possible in time to the moment of the real decision (election day). Here, we investigated the brain activity associated with the voting intention declared 1 week before the election day of the Brazilian Firearms Control Referendum about prohibiting the commerce of firearms. Two alliances arose in the Congress to run the campaigns for YES (for the prohibition of firearm commerce) and NO (against the prohibition of firearm commerce) voting. Time constraints imposed by the necessity of studying a reasonable number (here, 32) of voters during a very short time (5 days) made the EEG the tool of choice for recording the brain activity associated with voting decision. Recent fMRI and EEG studies have shown decision-making as a process due to the enrollment of defined neuronal networks. In this work, a special EEG technique is applied to study the topology of the voting decision-making networks and is compared to the results of standard ERP procedures. The results show that voting decision-making enrolled networks in charge of calculating the benefits and risks of the decision of prohibiting or allowing firearm commerce and that the topology of such networks was vote-(i.e., YES/NO-) sensitive. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Background & aim: Many disease outbreaks of food origin are caused by foods prepared in Food Service and Nutrition Units of hospitals, affecting hospitalized patients who, in most cases, are immunocompromised and therefore at a higher risk of severe worsening of their clinical status. The aim of this study was to determine the variations in temperature and the time-temperature factor of hospital diets. Methods: The time and temperature for the preparation of 4 diets of modified consistency were determined on 5 nonconsecutive days in a hospital Diet and Nutrition Unit at the end of preparation and during the maintenance period, portioning and distribution at 3 sites, i.e., the first, the middle and the last to receive the diets. Results and discussion: All foods reached an adequate temperature at the end of cooking, but temperature varied significantly from the maintenance period to the final distribution, characterizing critical periods for microorganism proliferation. During holding, temperatures that presented a risk were reached by 16.7% of the meats and 59% of the salads of the general diet, by 16.7% of the garnishes in the bland diet and by 20% of the meats and garnishes in the viscous diet. The same occurred at the end of distribution for 100% of the hot samples and of the salads and for 61% of the desserts. None of the preparations remained at risk temperature for a time exceeding that established by law. Conclusion: The exposure to inadequate temperature did not last long enough to pose risks to the patient.
Resumo:
This work proposes a new approach using a committee machine of artificial neural networks to classify masses found in mammograms as benign or malignant. Three shape factors, three edge-sharpness measures, and 14 texture measures are used for the classification of 20 regions of interest (ROIs) related to malignant tumors and 37 ROIs related to benign masses. A group of multilayer perceptrons (MLPs) is employed as a committee machine of neural network classifiers. The classification results are reached by combining the responses of the individual classifiers. Experiments involving changes in the learning algorithm of the committee machine are conducted. The classification accuracy is evaluated using the area A. under the receiver operating characteristics (ROC) curve. The A, result for the committee machine is compared with the A, results obtained using MLPs and single-layer perceptrons (SLPs), as well as a linear discriminant analysis (LDA) classifier Tests are carried out using the student's t-distribution. The committee machine classifier outperforms the MLP SLP, and LDA classifiers in the following cases: with the shape measure of spiculation index, the A, values of the four methods are, in order 0.93, 0.84, 0.75, and 0.76; and with the edge-sharpness measure of acutance, the values are 0.79, 0.70, 0.69, and 0.74. Although the features with which improvement is obtained with the committee machines are not the same as those that provided the maximal value of A(z) (A(z) = 0.99 with some shape features, with or without the committee machine), they correspond to features that are not critically dependent on the accuracy of the boundaries of the masses, which is an important result. (c) 2008 SPIE and IS&T.
Resumo:
A network can be analyzed at different topological scales, ranging from single nodes to motifs, communities, up to the complete structure. We propose a novel approach which extends from single nodes to the whole network level by considering non-overlapping subgraphs (i.e. connected components) and their interrelationships and distribution through the network. Though such subgraphs can be completely general, our methodology focuses on the cases in which the nodes of these subgraphs share some special feature, such as being critical for the proper operation of the network. The methodology of subgraph characterization involves two main aspects: (i) the generation of histograms of subgraph sizes and distances between subgraphs and (ii) a merging algorithm, developed to assess the relevance of nodes outside subgraphs by progressively merging subgraphs until the whole network is covered. The latter procedure complements the histograms by taking into account the nodes lying between subgraphs, as well as the relevance of these nodes to the overall subgraph interconnectivity. Experiments were carried out using four types of network models and five instances of real-world networks, in order to illustrate how subgraph characterization can help complementing complex network-based studies.
Resumo:
In this paper, a novel wire-mesh sensor based on permittivity (capacitance) measurements is applied to generate images of the phase fraction distribution and investigate the flow of viscous oil and water in a horizontal pipe. Phase fraction values were calculated from the raw data delivered by the wire-mesh sensor using different mixture permittivity models. Furthermore, these data were validated against quick-closing valve measurements. Investigated flow patterns were dispersion of oil in water (Do/w) and dispersion of oil in water and water in oil (Do/w&w/o). The Maxwell-Garnett mixing model is better suited for Dw/o and the logarithmic model for Do/w&w/o flow pattern. Images of the time-averaged cross-sectional oil fraction distribution along with axial slice images were used to visualize and disclose some details of the flow.
Resumo:
Giardia duodenalis is a protozoan that parasitizes humans and other mammals and causes giardiasis. Although its isolates have been divided into seven assemblages, named A to G, only A and B have been detected in human faeces. Assemblage A isolates are commonly divided into two genotypes, AI and AII. Even though information about the presence of this protozoan in water and sewage is available in Brazil, it is important to verify the distribution of different assemblages that might be present, which can only be done by genotyping techniques. A total of 24 raw and treated sewage, surface and spring water samples were collected, concentrated and purified. DNA was extracted, and a nested PCR was used to amplify an 890 bp fragment of the gdh gene of G. duodenalis, which codes for glutamate dehydrogenase. Positive samples were cloned and sequenced. Ten out of 24 (41.6%) samples were confirmed to be positive for G. duodenalis by sequencing. Phylogenetic analysis grouped most sequences with G. duodenalis genotype AII from GenBank. Only two raw sewage samples presented sequences assigned to assemblage B. In one of these samples genotype AII was also detected. As these assemblages/genotypes are commonly associated to human giardiasis, the contact with these matrices represents risk for public health.
Resumo:
Aeromonads are inhabitants of aquatic ecosystems and are described as being involved in intestinal disturbances and other infections. A total of 200 drinking water samples from domestic and public reservoirs and drinking fountains located in São Paulo (Brazil), were analyzed for the presence of Aeromonas. Samples were concentrated by membrane filtration and enriched in APW. ADA medium was used for Aeromonas isolation and colonies were confirmed by biochemical characterization. Strains isolated were tested for hemolysin and toxin production. Aeromonas was detected in 12 samples (6.0%). Aeromonas strains (96) were isolated and identified as: A. caviae (41.7%), A. hydrophila (15.7%), A.allosacharophila (10.4%), A. schubertii (1.0%) and Aeromonas spp. (31.2%).The results revealed that 70% of A. caviae, 66.7% of A. hydrophila, 80% of A. allosacharophila and 46.6% of Aeromonas spp. were hemolytic. The assay for checking production of toxins showed that 17.5% of A. caviae, 73.3% of A. hydrophila, 60% of A. allosacharophila, 100% of A. schubertii, and 33.3% of Aeromonas spp. were able to produce toxins. The results demonstrated the pathogenic potential of Aeromonas, indicating that the presence of this emerging pathogen in water systems is a public health concern