42 resultados para Viewpoints simulation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The results concerning on an experimental and a numerical study related to SFRCP are presented. Eighteen pipes with an internal diameter of 600 mm and fibre dosages of 10, 20 and 40 kg/m(3) were manufactured and tested. Some technological aspects were concluded. Likewise, a numerical parameterized model was implemented. With this model, the simulation of the resistant behaviour of SFRCP can be performed. In this sense, the results experimentally obtained were contrasted with those suggested by means MAP reaching very satisfactory correlations. Taking it into account, it could be said that the numerical model is a useful tool for the optimal design of the SFRCP fibre dosages, avoiding the need of the systematic employment of the test as an indirect design method. Consequently, the use of this model would reduce the overall cost of the pipes and would give fibres a boost as a solution for this structural typology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The approach presented in this paper consists of an energy-based field-circuit coupling in combination with multi-physics simulation of the acoustic radiation of electrical machines. The proposed method is applied to a special switched reluctance motor with asymmetric pole geometry to improve the start-up torque. The pole shape has been optimized, subject to low torque ripple, in a previous study. The proposed approach here is used to analyze the impact of the optimization on the overall acoustic behavior. The field-circuit coupling is based on a temporary lumped-parameter model of the magnetic part incorporated into a circuit simulation based on the modified nodal analysis. The harmonic force excitation is calculated by means of stress tensor computation, and it is transformed to a mechanical mesh by mapping techniques. The structural dynamic problem is solved in the frequency domain using a finite-element modal analysis and superposition. The radiation characteristic is obtained from boundary element acoustic simulation. Simulation results of both rotor types are compared, and measurements of the drive are presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A mathematical model, numerical simulations and stability and flow regime maps corresponding to severe slugging in pipeline riser systems, are presented. In the simulations air and water were used as flowing fluids. The mathematical model considers continuity equations for liquid and gas phases, with a simplified momentum equation for the mixture, neglecting inertia. A drift-flux model, evaluated for the local conditions in the riser, is used as a closure law. The developed model predicts the location of the liquid accumulation front in the pipeline and the liquid level in the riser, so it is possible to determine which type of severe slugging occurs in the system. The numerical procedure is convergent for different nodalizations. A comparison is made with experimental results corresponding to a catenary riser, showing very good results for slugging cycle and stability and flow regime maps. (c) 2010 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The 3D flow around a circular cylinder free to oscillate transversely to the free stream was simulated using Computational Fluid Dynamics (CFD) and the Spalart-Allmaras Detached Eddy Simulation (DES) turbulence model for a Reynolds number Re = 10(4). Simulations were carried out for a small mass-damping parameter m*zeta = 0.00858, where m* = 3.3 and zeta = 0.0026. We found good agreement between the numerical results and experimental data. The simulations predicted the high observed amplitudes of the upper branch of vortex-induced vibrations for low mass-damping parameters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The motivation for this research is to make a comparison between dynamic results of a free railway wheelset derailment and safety limits. For this purpose, a numerical simulation of a wheelset derailment submitted to increasing lateral force is used to compare with the safety limit, using different criteria. A simplified wheelset model is used to simulate derailments with different adhesion conditions. The contact force components, including the longitudinal and spin effects, are identified in a steady-state condition on the verge of a derailment. The contact force ratios are used in a three-dimensional (3D) analytical formula to calculate the safety limits. Simulation results obtained with two contact methods were compared with the published results and the safety limit was identified with the two criteria. Results confirm Nadal`s conservative aspect and show that safety 3D analytical formula presents slightly higher safety limits for lower friction coefficients and smaller limits for high friction, in comparison with the simulation results with Fastsim.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a method to simulate the Magnetic Barkhausen Noise using the Random Field Ising Model with magnetic long-range interaction. The method allows calculating the magnetic flux density behavior in particular sections of the lattice reticule. The results show an internal demagnetizing effect that proceeds from the magnetic long-range interactions. This demagnetizing effect induces the appearing of a magnetic pattern in the region of magnetic avalanches. When compared with the traditional method, the proposed numerical procedure neatly reduces computational costs of simulation. (c) 2008 Published by Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There are several ways to attempt to model a building and its heat gains from external sources as well as internal ones in order to evaluate a proper operation, audit retrofit actions, and forecast energy consumption. Different techniques, varying from simple regression to models that are based on physical principles, can be used for simulation. A frequent hypothesis for all these models is that the input variables should be based on realistic data when they are available, otherwise the evaluation of energy consumption might be highly under or over estimated. In this paper, a comparison is made between a simple model based on artificial neural network (ANN) and a model that is based on physical principles (EnergyPlus) as an auditing and predicting tool in order to forecast building energy consumption. The Administration Building of the University of Sao Paulo is used as a case study. The building energy consumption profiles are collected as well as the campus meteorological data. Results show that both models are suitable for energy consumption forecast. Additionally, a parametric analysis is carried out for the considered building on EnergyPlus in order to evaluate the influence of several parameters such as the building profile occupation and weather data on such forecasting. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A matrix method is presented for simulating acoustic levitators. A typical acoustic levitator consists of an ultrasonic transducer and a reflector. The matrix method is used to determine the potential for acoustic radiation force that acts on a small sphere in the standing wave field produced by the levitator. The method is based on the Rayleigh integral and it takes into account the multiple reflections that occur between the transducer and the reflector. The potential for acoustic radiation force obtained by the matrix method is validated by comparing the matrix method results with those obtained by the finite element method when using an axisymmetric model of a single-axis acoustic levitator. After validation, the method is applied in the simulation of a noncontact manipulation system consisting of two 37.9-kHz Langevin-type transducers and a plane reflector. The manipulation system allows control of the horizontal position of a small levitated sphere from -6 mm to 6 mm, which is done by changing the phase difference between the two transducers. The horizontal position of the sphere predicted by the matrix method agrees with the horizontal positions measured experimentally with a charge-coupled device camera. The main advantage of the matrix method is that it allows simulation of non-symmetric acoustic levitators without requiring much computational effort.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Simulation of irrigated Thanzania grass growth based on photothermal units, nitrogen fertilization and water availability. The mathematical model to predict the forage yield using photothennal units was utilized with success in Elephant grass, Thanzania and Brachiaria niziziensis in the absence of water stress and nitrogen stress. The aim of this study was to propose models to estimate the forage yield of Thanzania grass under different irrigation (25, 50,75, 100 e 125% of ETc) and nitrogen level in various regions of Brazil. As such, models were developed to estimate the dry matter production of Panicum maximum Jacq. frass cv Thanzania in different irrigation and nitrogen levels, using photothermal units. The models were adjusted to doses of 0, 30, 60, 110 and 270 kg of N ha(-1), doses were divided in applications after each evaluation, with a rest cycle of 35 days. The adjusted model presented good performance in predicting dry matter production of Thanzania grass, with r(2) = 0.9999. The results made it possible to verify that the proposed model can be used to predict forage production in different regions of Brazil. It can be estimated, with good precision. The production of Thanzania grass dry matter can be accurately estimated in specific places (in function of latitude and time of year), with the maximum and minimum temperature values.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the protein folding problem, solvent-mediated forces are commonly represented by intra-chain pairwise contact energy. Although this approximation has proven to be useful in several circumstances, it is limited in some other aspects of the problem. Here we show that it is possible to achieve two models to represent the chain-solvent system. one of them with implicit and other with explicit solvent, such that both reproduce the same thermodynamic results. Firstly, lattice models treated by analytical methods, were used to show that the implicit and explicitly representation of solvent effects can be energetically equivalent only if local solvent properties are time and spatially invariant. Following, applying the same reasoning Used for the lattice models, two inter-consistent Monte Carlo off-lattice models for implicit and explicit solvent are constructed, being that now in the latter the solvent properties are allowed to fluctuate. Then, it is shown that the chain configurational evolution as well as the globule equilibrium conformation are significantly distinct for implicit and explicit solvent systems. Actually, strongly contrasting with the implicit solvent version, the explicit solvent model predicts: (i) a malleable globule, in agreement with the estimated large protein-volume fluctuations; (ii) thermal conformational stability, resembling the conformational hear resistance of globular proteins, in which radii of gyration are practically insensitive to thermal effects over a relatively wide range of temperatures; and (iii) smaller radii of gyration at higher temperatures, indicating that the chain conformational entropy in the unfolded state is significantly smaller than that estimated from random coil configurations. Finally, we comment on the meaning of these results with respect to the understanding of the folding process. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gamma and beta radiation emitting radiopharmaceuticals are handled in nuclear medicine services, and in many cases there is only individual monitoring of gamma radiation. In this paper, the results obtained using a wrist dosimeter prototype (CaSO(4):Dy + Teflon pellets) show that the doses for workers occupationally exposed to beta radiation from (153)Sm are not negligible. It is important that this dose is evaluated, and it has to be taken into consideration in the individual monitoring system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study evaluated the stress levels at the core layer and the veneer layer of zirconia crowns (comprising an alternative core design vs. a standard core design) under mechanical/thermal simulation, and subjected simulated models to laboratory mouth-motion fatigue. The dimensions of a mandibular first molar were imported into computer-aided design (CAD) software and a tooth preparation was modeled. A crown was designed using the space between the original tooth and the prepared tooth. The alternative core presented an additional lingual shoulder that lowered the veneer bulk of the cusps. Finite element analyses evaluated the residual maximum principal stresses fields at the core and veneer of both designs under loading and when cooled from 900 degrees C to 25 degrees C. Crowns were fabricated and mouth-motion fatigued, generating master Weibull curves and reliability data. Thermal modeling showed low residual stress fields throughout the bulk of the cusps for both groups. Mechanical simulation depicted a shift in stress levels to the core of the alternative design compared with the standard design. Significantly higher reliability was found for the alternative core. Regardless of the alternative configuration, thermal and mechanical computer simulations showed stress in the alternative core design comparable and higher to that of the standard configuration, respectively. Such a mechanical scenario probably led to the higher reliability of the alternative design under fatigue.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper aims at assessing the performance of a program of thermal simulation (Arquitrop) in different households in the city of Sao Paulo, Brazil. The households were selected for the Wheezing Project which followed up children under 2 years old to monitor the occurrence of respiratory diseases. The results show that in all three study households there is a good approximation between the observed and the simulated indoor temperatures. It was also observed a fairly consistent and realistic behavior between the simulated indoor and the outdoor temperatures, describing the Arquitrop model as an efficient estimator and good representative of the thermal behavior of households in the city of Sao Paulo. The worst simulation is linked to the poorest type of construction. This may be explained by the bad quality of the construction, which the Architrop could not simulate adequately.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Numerical simulations are carried out to examine the role of the Kuo and Kain-Fritsch (KF) cumulus parameterization schemes and dry dynamics on a cyclone development, in a weak baroclinic atmosphere, over subtropical South Atlantic Ocean. The initial phase of the cyclone development is investigated with a coarse horizontal mesh (75 km) and when the cyclone reaches the mature stage two different horizontal resolutions are used (75 and 25 km). The best performance simulation for the cyclone initial phase occurs when the Kuo convective scheme is applied, and this may be attributed to a greater diabatic warming in the troposphere. On the other hand, the dry simulation is not capable of simulating the correct location and intensity of the cyclone in its initial phase. During the mature phase, a cyclone over deepening occurs in the Kuo scheme experiment associated with larger latent heat release in a deep vertical column. The presence of downdraft currents in the KF scheme, which acts to cool and dry the lower levels, is essential to stabilize the atmosphere and to reproduce the nearest observation cyclone deepening rate. The largest cyclone deepening is found in the Kuo scheme high resolution experiment. This suggests that the KF convective scheme is less sensitive to the horizontal grid resolution. It was also revealed that the diabatic processes are crucial to simulate the observed features of this marine cyclone over subtropical region.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Here we investigate the contribution of surface Alfven wave damping to the heating of the solar wind in minima conditions. These waves are present in the regions of strong inhomogeneities in density or magnetic field (e.g., the border between open and closed magnetic field lines). Using a three-dimensional (3D) magnetohydrodynamics (MHD) model, we calculate the surface Alfven wave damping contribution between 1 and 4 R(circle dot) (solar radii), the region of interest for both acceleration and coronal heating. We consider waves with frequencies lower than those that are damped in the chromosphere and on the order of those dominating the heliosphere: 3 x 10(-6) to 10(-1) Hz. In the region between open and closed field lines, within a few R(circle dot) of the surface, no other major source of damping has been suggested for the low frequency waves we consider here. This work is the first to study surface Alfven waves in a 3D environment without assuming a priori a geometry of field lines or magnetic and density profiles. We demonstrate that projection effects from the plane of the sky to 3D are significant in the calculation of field line expansion. We determine that waves with frequencies >2.8 x 10(-4) Hz are damped between 1 and 4 R(circle dot). In quiet-Sun regions, surface Alfven waves are damped at further distances compared to active regions, thus carrying additional wave energy into the corona. We compare the surface Alfven wave contribution to the heating by a variable polytropic index and find it as an order of magnitude larger than needed for quiet-Sun regions. For active regions, the contribution to the heating is 20%. As it has been argued that a variable gamma acts as turbulence, our results indicate that surface Alfven wave damping is comparable to turbulence in the lower corona. This damping mechanism should be included self-consistently as an energy driver for the wind in global MHD models.