28 resultados para Vegetable Fats


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Soybean oil can be deacidified by liquid-liquid extraction with ethanol. In the present paper, the liquid-liquid equilibria of systems composed of refined soybean oil, commercial linoleic acid, ethanol and water were investigated at 298.2 K. The experimental data set obtained from the present study (at 298.2 K) and the results of Mohsen-Nia et al. [1] (at 303.2 K) and Rodrigues et al. [2] (at 323.2 K) were correlated by applying the non-random two liquid (NRTL) model. The results of the present study indicated that the mutual solubility of the compounds decreased with an increase in the water content of the solvent and a decrease in the temperature of the solution. Among variables, the water content of the solvent had the strongest effect on the solubility of the components. The maximum deviation and average variance between the experimental and calculated compositions were 1.60% and 0.89%, indicating that the model could accurately predict the behavior of the compounds at different temperatures and degrees of hydration. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

P>Vegetable oils can be extracted using ethanol as solvent. The main goal of this work was to evaluate the ethanol performance on the extraction process of rice bran oil. The influence of process variables, solvent hydration and temperature was evaluated using the response surface methodology, aiming to maximise the soluble substances and gamma-oryzanol transfer and minimise the free fatty acids extraction and the liquid content in the underflow solid. It can be noted that oil solubility in ethanol was highly affected by the water content. The free fatty acids extraction is improved by increasing the moisture content in the solvent. Regarding the gamma-oryzanol, it can be observed that its extraction is affected by temperature when low level of water is added to ethanol. On the other hand, the influence of temperature is minimised with high levels of water in the ethanol.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present work evaluated the effects of accelerated carbonation on mechanical and physical characteristics of cementitious roofing tiles reinforced with vegetable fibre. The maximum load and toughness of the tiles have increased approximately 25% and 80% respectively as a consequence of the accelerated carbonation. Water absorption and apparent porosity decreased with carbonation while bulk density increased as a clear indication of the densification of the composite. The improvement on the mechanical performance suggests that the fibres retained their tensile strength in the inorganic matrix. Results of specimens extracted from the tested tiles after approximately 480 days in laboratory environment and further aged indicate that soak and dry cycles promoted some leaching of hydration products and more voids and lower density when performed before carbonation. The results indicate the utilization of accelerated carbonation as an effective procedure to mitigate the degradation suffered by the cellulose fibres in the less aggressive medium. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present paper reports phase equilibrium experimental data for two systems composed by peanut oil or avocado seed oil + commercial oleic acid + ethanol + water at 298.2 K and different water contents in the solvent. The addition of water to the solvent reduces the loss of neutral oil in the alcoholic phase and improves the solvent selectivity. The experimental data were correlated by the NRTL and UNIQUAC models. The global deviations between calculated and experimental values were 0.63 % and 1.08 %, respectively, for the systems containing avocado seed oil. In the case of systems containing peanut oil those deviations were 0.65 % and 0.98 %, respectively. Such results indicate that both models were able to reproduce correctly the experimental data, although the NRTL model presented a better performance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In animal models of diet-induced obesity, the activation of an inflammatory response in the hypothalamus produces molecular and functional resistance to the anorexigenic hormones insulin and leptin. The primary events triggered by dietary fats that ultimately lead to hypothalamic cytokine expression and inflammatory signaling are unknown. Here, we test the hypothesis that dietary fats act through the activation of toll-like receptors 2/4 and endoplasmic reticulum stress to induce cytokine expression in the hypothalamus of rodents. According to our results, long-chain saturated fatty acids activate predominantly toll-like receptor 4 signaling, which determines not only the induction of local cytokine expression but also promotes endoplasmic reticulum stress. Rats fed on a monounsaturated fat-rich diet do not develop hypothalamic leptin resistance, whereas toll-like receptor 4 loss-of-function mutation and immunopharmacological inhibition of toll-like receptor 4 protects mice from diet-induced obesity. Thus, toll-like receptor 4 acts as a predominant molecular target for saturated fatty acids in the hypothalamus, triggering the intracellular signaling network that induces an inflammatory response, and determines the resistance to anorexigenic signals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Free fatty acids are known for playing a crucial role in the development of insulin resistance. High fat intake is known for impairing insulin sensitivity; however, the effect of vegetable-oil injections have never been investigated. The present study investigated the effects of daily subcutaneous injections (100 mu L) of soybean (SB) and sunflower (SF) oils, during 7 days. Both treated groups developed insulin resistance as assessed by insulin tolerance test. The mechanism underlying the SB- and SF-induced insulin resistance was shown to involve GLUT4. In SB- and SF-treated animals, the GLUT4 protein expression was reduced similar to 20% and 10 min after an acute it? vivo stimulus with insulin, the plasma membrane GLUT4 content was similar to 60% lower in white adipose tissue (WAT). No effects were observed in skeletal muscle. Additionally, both oil treatments increased mainly the content of palmitic acid (similar to 150%) in WAT, which can contribute to explain the GLUT4 regulations. Altogether, the present study collects evidence that those oil treatments might generate insulin resistance by targeting GLUT4 expression and translocation specifically in WAT. These alterations are likely to be caused due to the specific local increase in saturated fatty acids that occurred as a consequence of oil daily injections. Copyright (C) 2010 John Wiley & Sons, Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The production of PHA from plant oils by Pseudomonas species soil isolated from a sugarcane crop was evaluated. Out of 22 bacterial strains three were able to use efficiently plant oils to grow and to accumulate PHA. Pseudomonas putida and Pseudomonas aeruginosa strains produced PHA presenting differences on monomer composition compatible with variability on monomer specificity of their PHA biosynthesis system. The molar fraction of 3-hydroxydodecanoate detected in the PHA was linearly correlated to the oleic acid supplied. A non-linear relationship between the molar fractions of 3-hydroxy-6-dodecenoate (3HDd Delta(6)) detected in PHA and the linoleic acid supplied was observed, compatible with saturation in the biosynthesis system capability to channel intermediate of P-oxidation to PHA synthesis. Although P. putida showed a higher 3HDd Delta(6) yield from linoleic acid when compared to P. aeruginosa, in both species it was less than 10% of the maximum theoretical value. These results contribute to the knowledge about the biosynthesis of PHA with a controlled composition from plant oils allowing in the future establishing the production of these polyesters as tailor-made polymers. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The final contents of total and individual trans-fatty acids of sunflower oil, produced during the deacidification step of physical refining were obtained using a computational simulation program that considered cis-trans isomerization reaction features for oleic, linoleic, and linolenic acids attached to the glycerol part of triacylglycerols. The impact of process variables, such as temperature and liquid flow rate, and of equipment configuration parameters, such as liquid height, diameter, and number of stages, that influence the retention time of the oil in the equipment was analyzed using the response-surface methodology (RSM). The computational simulation and the RSM results were used in two different optimization methods, aiming to minimize final levels of total and individual trans-fatty acids (trans-FA), while keeping neutral oil loss and final oil acidity at low values. The main goal of this work was to indicate that computational simulation, based on a careful modeling of the reaction system, combined with optimization could be an important tool for indicating better processing conditions in industrial physical refining plants of vegetable oils, concerning trans-FA formation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An alternative method for determination of total trans fatty acids expressed as elaidic acid by capillary zone electrophoresis (CZE) under indirect UV detection at 224 nm within an analysis time of 7.5 min was developed. The optimized running electrolyte includes 15.0 mmol L(-1) KH(2)PO(4)/Na(2)HPO(4) buffer (pH similar to 7.0), 4.0 mmol L(-1) SDBS, 8.0 mmol L(-1) Brij35, 45%v/v ACN, 8% methanol, and 1.5% v/v n-octanol. Baseline separation of the critical pair C18-9cis/C18:1-9t: with a resolution higher than 1.5 was achieved using C15:0 as the internal standard. The optimum capillary electrophoresis (CE) conditions for the background electrolyte were established with the aid of Raman spectroscopy and experiments of a 3(2) factorial design. After response factor (R(F)) calculations, the CE method was applied to total trans fatty acid (TTFA) analysis in a hydrogenated vegetable fat (HVF) sample, and compared with the American Oil Chemists` Society (AOCS) official method by gas chromatography (GC). The methods were compared with an independent sample t test, and no significant difference was found between CE and GC methods within the 95% confidence interval for six genuine replicates of TTFA analysis (p-value > 0.05). The CE method was applied to TTFA analysis in a spreadable cheese sample. Satisfactory results were obtained, indicating that the optimized methodology can be used for trans fatty acid determination for these samples.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The proposed method for the identification of adulteration was based on the controlled acid hydrolysis of xylan and starch present in some vegetable adulterants, followed by the analysis of the resulting xylose and glucose, which are the monosaccharides that compose, respectively, the two polysaccharides. The acid hydrolysis with HCl increases the ionic strength of the sample, which impairs the electrophoretic separation. Thus, a neutralization step based on anion exchange resin was necessary. The best separations were obtained in NaOH 80 mmol/L, CTAB 0.5 mmol/L, and methanol 30% v/v. Because of the high value of pH, monosaccharides are separated as anionic species in such running electrolyte. The LOQ for both monosaccharides was 0.2 g for 100 g of dry matter, which conforms to the tolerable limits.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The electroanalytical techniques are very promissing to perform the quality control of crude vegetable. Solid State Differential Pulse Voltammetry in the supporting electrolyte is able to detect the oxidation signals of the active material, which can be used as a parameter to identify the type of crude vegetable and its antioxidant activity. The working electrode consisted in a carbon paste electrode modified with the powder of vegetable raw material (EMF). The electrochemical measurements were performed in a cell containing the working (EMF), reference (Ag/AgCl, KClsat) and auxiliary (Pt) electrodes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thermoset phenolic composites reinforced with sisal fibers were prepared to optimize the cure step. In the present study, processing parameters such as pressure, temperature, and time interval were varied to control the vaporization of the water generated as a byproduct during the crosslinking reaction. These molecules can vaporize forming voids, which in turn affect the final material properties. The set of results on impact strength revealed that the application of higher pressure before the gel point of the phenolic matrix produced composites with better properties. The SEM images showed that the cure cycle corresponding to the application of higher values of molding pressure at the gel point of the phenolic resin led to the reduction of voids in the matrix. In addition, the increase in the molding pressure during the cure step increased the resin interdiffusion. Better filling of the fiber channels decreased the possibility of water molecules diffusing through the internal spaces of the fibers. These molecules then diffused mainly through the bulk of the thermoset matrix, which led to a decrease in the water diffusion coefficient (D) at all three temperatures (25, 55 and 70 degrees C) considered in the experiments. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In recent times, increasing attention has been paid to the use of renewable resources particularly of plant origin keeping in view the ecological concerns, renewability and many governments passing laws for the use of such materials. On the other hand, despite abundant availability of lignocellulosic materials in Brazil, very few attempts have been made about their utilization, probably due to lack of sufficient structure/property data. Systematic studies to know their properties and morphology may bridge this gap while leading to value addition to these natural materials. Chemical composition, X-ray powder diffraction, and morphological studies and thermal behavior aspects in respect of banana, sugarcane bagasse sponge gourd fibers of Brazilian origin are presented. Chemical compositions of the three fibers are found to be different than those reported earlier. X-ray diffraction patterns of these three fibers exhibit mainly cellulose type I structure with the crystallinity indices of 39%, 48% and 50% respectively for these fibers. Morphological studies of the fibers revealed different sizes and arrangement of cells. Thermal stability of all the fibers is found to be around 200 degrees C. Decomposition of both cellulose and hemicelluloses in the fibers takes place at 300 degrees C and above, while the degradation of fibers takes place above 400 degrees C. These data may help finding new uses for these fibers. (C) 2009 Elsevier B.V. All rights reserved.